基于局部二值模式特征的车牌定位

A. X, Adline N Titus, A. A
{"title":"基于局部二值模式特征的车牌定位","authors":"A. X, Adline N Titus, A. A","doi":"10.1109/ICRAECC43874.2019.8994964","DOIUrl":null,"url":null,"abstract":"The importance of Intelligent Transportation System (ITS) is increasing because of increasing the number of vehicles on the roads. Automatic License Plate Detection (ALPD) is still a challenging task based on weather, occlusion, dirty License Plates (LP) and some other factors. In this paper Local Binary Pattern (LBP) feature is proposed for the detection of LP region. Cascaded Adaboost classifier is used for the classification of candidate region. The input images are chosen with different conditions such as occlusion, low contrast, dirty LP images and poor illumination. The proposed technique is tested on 600 images. This method achieves 96.8% detection rate.","PeriodicalId":137313,"journal":{"name":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vehicle License Plate Localization based on Local Binary Pattern Features\",\"authors\":\"A. X, Adline N Titus, A. A\",\"doi\":\"10.1109/ICRAECC43874.2019.8994964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of Intelligent Transportation System (ITS) is increasing because of increasing the number of vehicles on the roads. Automatic License Plate Detection (ALPD) is still a challenging task based on weather, occlusion, dirty License Plates (LP) and some other factors. In this paper Local Binary Pattern (LBP) feature is proposed for the detection of LP region. Cascaded Adaboost classifier is used for the classification of candidate region. The input images are chosen with different conditions such as occlusion, low contrast, dirty LP images and poor illumination. The proposed technique is tested on 600 images. This method achieves 96.8% detection rate.\",\"PeriodicalId\":137313,\"journal\":{\"name\":\"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAECC43874.2019.8994964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAECC43874.2019.8994964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于道路上车辆的增加,智能交通系统(ITS)的重要性日益增加。车牌自动检测(ALPD)仍然是一个具有挑战性的任务,由于天气,遮挡,脏车牌(LP)和其他一些因素。本文提出了局部二值模式(LBP)特征用于LP区域的检测。使用级联Adaboost分类器对候选区域进行分类。输入图像选择不同的条件,如遮挡,低对比度,脏LP图像和光照差。该方法在600幅图像上进行了测试。该方法的检出率为96.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle License Plate Localization based on Local Binary Pattern Features
The importance of Intelligent Transportation System (ITS) is increasing because of increasing the number of vehicles on the roads. Automatic License Plate Detection (ALPD) is still a challenging task based on weather, occlusion, dirty License Plates (LP) and some other factors. In this paper Local Binary Pattern (LBP) feature is proposed for the detection of LP region. Cascaded Adaboost classifier is used for the classification of candidate region. The input images are chosen with different conditions such as occlusion, low contrast, dirty LP images and poor illumination. The proposed technique is tested on 600 images. This method achieves 96.8% detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信