基于特征集成投影的孤立手写数字识别的写作者自适应方法

Hamidreza Hosseinzadeh, F. Razzazi
{"title":"基于特征集成投影的孤立手写数字识别的写作者自适应方法","authors":"Hamidreza Hosseinzadeh, F. Razzazi","doi":"10.1109/PRIA.2015.7161630","DOIUrl":null,"url":null,"abstract":"Learning handwriting categories fail to perform well when trained and tested on data from different databases. In this paper, we propose a novel framework of Ensemble Projection (EP) for writer adaptation. We employed EP as a feature transformation method which can be combined with different types of classifiers for unsupervised and semi-supervised adaptation. Experiments on a handwritten digit dataset demonstrate that EP learning can increase recognition rates significantly, both in the unsupervised and semi-supervised cases.","PeriodicalId":163817,"journal":{"name":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A writer adaptation method for isolated handwritten digit recognition based on Ensemble Projection of features\",\"authors\":\"Hamidreza Hosseinzadeh, F. Razzazi\",\"doi\":\"10.1109/PRIA.2015.7161630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning handwriting categories fail to perform well when trained and tested on data from different databases. In this paper, we propose a novel framework of Ensemble Projection (EP) for writer adaptation. We employed EP as a feature transformation method which can be combined with different types of classifiers for unsupervised and semi-supervised adaptation. Experiments on a handwritten digit dataset demonstrate that EP learning can increase recognition rates significantly, both in the unsupervised and semi-supervised cases.\",\"PeriodicalId\":163817,\"journal\":{\"name\":\"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2015.7161630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2015.7161630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当对来自不同数据库的数据进行训练和测试时,学习笔迹分类的效果不佳。在本文中,我们提出了一个新的作家改编的集合投影(EP)框架。我们将EP作为一种特征转换方法,可以与不同类型的分类器结合进行无监督和半监督自适应。在手写数字数据集上的实验表明,EP学习在无监督和半监督情况下都可以显著提高识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A writer adaptation method for isolated handwritten digit recognition based on Ensemble Projection of features
Learning handwriting categories fail to perform well when trained and tested on data from different databases. In this paper, we propose a novel framework of Ensemble Projection (EP) for writer adaptation. We employed EP as a feature transformation method which can be combined with different types of classifiers for unsupervised and semi-supervised adaptation. Experiments on a handwritten digit dataset demonstrate that EP learning can increase recognition rates significantly, both in the unsupervised and semi-supervised cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信