一种带衰落因子的模糊自适应强跟踪算法

Shuai Fang, Chuchu Zhao, Jinping Sun
{"title":"一种带衰落因子的模糊自适应强跟踪算法","authors":"Shuai Fang, Chuchu Zhao, Jinping Sun","doi":"10.1109/CISP-BMEI53629.2021.9624316","DOIUrl":null,"url":null,"abstract":"The maximum acceleration parameter determines the effect of the current statistical (CS) model. Thus, when tracking weak maneuvering targets or targets whose actual acceleration exceeds the given value, the tracking performance of the traditional algorithm that sets with a priori fixed value will drop sharply. To solve this problem, a fuzzy adaptive strong tracking algorithm with fading factor (IAFCS-IMM) is proposed. The algorithm adopts a two-level fuzzy logic system. Through the first-level fuzzy logic, a maneuvering factor representing the maneuverability of the target is obtained according to the estimated acceleration information of the model, and the maximum acceleration parameter is adaptively modified. The second-level fuzzy logic is adopted to adjust the model update probability of interacting multiple model (IMM) algorithm according to the maneuver factor. Besides, a fading factor is introduced in the filtering process, which can enhance the robustness of the filter to the sharp mutation of the target state. Simulation results demonstrate that IAFCS-IMM algorithm achieves good results in filtering accuracy and tracking stability of maneuvering targets.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"62 139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fuzzy Adaptive Strong Tracking Algorithm with Fading Factor\",\"authors\":\"Shuai Fang, Chuchu Zhao, Jinping Sun\",\"doi\":\"10.1109/CISP-BMEI53629.2021.9624316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum acceleration parameter determines the effect of the current statistical (CS) model. Thus, when tracking weak maneuvering targets or targets whose actual acceleration exceeds the given value, the tracking performance of the traditional algorithm that sets with a priori fixed value will drop sharply. To solve this problem, a fuzzy adaptive strong tracking algorithm with fading factor (IAFCS-IMM) is proposed. The algorithm adopts a two-level fuzzy logic system. Through the first-level fuzzy logic, a maneuvering factor representing the maneuverability of the target is obtained according to the estimated acceleration information of the model, and the maximum acceleration parameter is adaptively modified. The second-level fuzzy logic is adopted to adjust the model update probability of interacting multiple model (IMM) algorithm according to the maneuver factor. Besides, a fading factor is introduced in the filtering process, which can enhance the robustness of the filter to the sharp mutation of the target state. Simulation results demonstrate that IAFCS-IMM algorithm achieves good results in filtering accuracy and tracking stability of maneuvering targets.\",\"PeriodicalId\":131256,\"journal\":{\"name\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"62 139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI53629.2021.9624316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大加速度参数决定了当前统计(CS)模型的效果。因此,在跟踪弱机动目标或实际加速度超过给定值的目标时,采用先验固定值设置的传统算法的跟踪性能会急剧下降。为了解决这一问题,提出了一种带衰落因子的模糊自适应强跟踪算法。该算法采用两级模糊逻辑系统。通过一级模糊逻辑,根据模型估计的加速度信息得到代表目标机动性的机动因子,并自适应修正最大加速度参数。采用二级模糊逻辑根据机动因素调整交互多模型(IMM)算法的模型更新概率。此外,在滤波过程中引入了衰落因子,增强了滤波器对目标状态急剧突变的鲁棒性。仿真结果表明,IAFCS-IMM算法在滤波精度和机动目标跟踪稳定性方面取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fuzzy Adaptive Strong Tracking Algorithm with Fading Factor
The maximum acceleration parameter determines the effect of the current statistical (CS) model. Thus, when tracking weak maneuvering targets or targets whose actual acceleration exceeds the given value, the tracking performance of the traditional algorithm that sets with a priori fixed value will drop sharply. To solve this problem, a fuzzy adaptive strong tracking algorithm with fading factor (IAFCS-IMM) is proposed. The algorithm adopts a two-level fuzzy logic system. Through the first-level fuzzy logic, a maneuvering factor representing the maneuverability of the target is obtained according to the estimated acceleration information of the model, and the maximum acceleration parameter is adaptively modified. The second-level fuzzy logic is adopted to adjust the model update probability of interacting multiple model (IMM) algorithm according to the maneuver factor. Besides, a fading factor is introduced in the filtering process, which can enhance the robustness of the filter to the sharp mutation of the target state. Simulation results demonstrate that IAFCS-IMM algorithm achieves good results in filtering accuracy and tracking stability of maneuvering targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信