遇到强关联规则

G. Bhamra, A. Verma, R. B. Patel
{"title":"遇到强关联规则","authors":"G. Bhamra, A. Verma, R. B. Patel","doi":"10.1109/IADCC.2010.5422929","DOIUrl":null,"url":null,"abstract":"Data Mining (DM) is the process of automated extraction of interesting data patterns representing knowledge, from the large data sets. Frequent itemsets are the itemsets that appear in a data set frequently. Finding such frequent itemsets plays an essential role in mining associations, correlations, and many other interesting relationships among itemsets in transactional database. In this paper an algorithm, SAR (Strong Association Rule), is designed and implemented to check whether an Association Rule (AR) is strong enough or not. Apriori algorithm is also implemented to generate Frequent k-itemsets. A Binary Transactional Dataset is used for implementing the algorithm in java language.","PeriodicalId":249763,"journal":{"name":"2010 IEEE 2nd International Advance Computing Conference (IACC)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An encounter with Strong Association Rules\",\"authors\":\"G. Bhamra, A. Verma, R. B. Patel\",\"doi\":\"10.1109/IADCC.2010.5422929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Mining (DM) is the process of automated extraction of interesting data patterns representing knowledge, from the large data sets. Frequent itemsets are the itemsets that appear in a data set frequently. Finding such frequent itemsets plays an essential role in mining associations, correlations, and many other interesting relationships among itemsets in transactional database. In this paper an algorithm, SAR (Strong Association Rule), is designed and implemented to check whether an Association Rule (AR) is strong enough or not. Apriori algorithm is also implemented to generate Frequent k-itemsets. A Binary Transactional Dataset is used for implementing the algorithm in java language.\",\"PeriodicalId\":249763,\"journal\":{\"name\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2010.5422929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 2nd International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2010.5422929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据挖掘(DM)是从大型数据集中自动提取代表知识的有趣数据模式的过程。频繁项集是在数据集中频繁出现的项集。在挖掘事务数据库中项目集之间的关联、相关性和许多其他有趣的关系时,查找此类频繁的项目集起着至关重要的作用。本文设计并实现了一种算法SAR(强关联规则)来检测关联规则(AR)是否足够强。采用Apriori算法生成频繁k项集。该算法在java语言中使用二进制事务数据集实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An encounter with Strong Association Rules
Data Mining (DM) is the process of automated extraction of interesting data patterns representing knowledge, from the large data sets. Frequent itemsets are the itemsets that appear in a data set frequently. Finding such frequent itemsets plays an essential role in mining associations, correlations, and many other interesting relationships among itemsets in transactional database. In this paper an algorithm, SAR (Strong Association Rule), is designed and implemented to check whether an Association Rule (AR) is strong enough or not. Apriori algorithm is also implemented to generate Frequent k-itemsets. A Binary Transactional Dataset is used for implementing the algorithm in java language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信