基于机器学习算法的配水系统异常检测故障灵敏度分析

Alexandru Predescu, M. Mocanu, C. Lupu
{"title":"基于机器学习算法的配水系统异常检测故障灵敏度分析","authors":"Alexandru Predescu, M. Mocanu, C. Lupu","doi":"10.1109/ICCP.2018.8516643","DOIUrl":null,"url":null,"abstract":"The introduction of Machine Learning in large scale utility networks extends the room for improvement in the quality of service and maintenance costs. The ever expanding network of smart meters allows for a more accurate estimation of the state of the water distribution systems, at the same time requiring modern data processing solutions. By fusion with the more traditional approach in this field of research it is possible to enhance the existing capabilities for network analysis and to extend the algorithms to the level of cognitive abilities that form a basis for more efficient decision support system. In this paper we extend the fault sensitivity analysis for water distribution systems with the insights provided by state-of-the-art Machine Learning algorithms for data clustering and anomaly detection.","PeriodicalId":259007,"journal":{"name":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fault sensitivity analysis for anomaly detection in water distribution systems using Machine Learning algorithms\",\"authors\":\"Alexandru Predescu, M. Mocanu, C. Lupu\",\"doi\":\"10.1109/ICCP.2018.8516643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The introduction of Machine Learning in large scale utility networks extends the room for improvement in the quality of service and maintenance costs. The ever expanding network of smart meters allows for a more accurate estimation of the state of the water distribution systems, at the same time requiring modern data processing solutions. By fusion with the more traditional approach in this field of research it is possible to enhance the existing capabilities for network analysis and to extend the algorithms to the level of cognitive abilities that form a basis for more efficient decision support system. In this paper we extend the fault sensitivity analysis for water distribution systems with the insights provided by state-of-the-art Machine Learning algorithms for data clustering and anomaly detection.\",\"PeriodicalId\":259007,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2018.8516643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2018.8516643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大型公用事业网络中引入机器学习扩展了服务质量和维护成本的改进空间。不断扩大的智能电表网络可以更准确地估计供水系统的状态,同时需要现代数据处理解决方案。通过与该研究领域更传统的方法融合,可以增强现有的网络分析能力,并将算法扩展到认知能力水平,从而形成更有效的决策支持系统的基础。在本文中,我们利用最先进的机器学习算法为数据聚类和异常检测提供的见解,扩展了配水系统的故障灵敏度分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fault sensitivity analysis for anomaly detection in water distribution systems using Machine Learning algorithms
The introduction of Machine Learning in large scale utility networks extends the room for improvement in the quality of service and maintenance costs. The ever expanding network of smart meters allows for a more accurate estimation of the state of the water distribution systems, at the same time requiring modern data processing solutions. By fusion with the more traditional approach in this field of research it is possible to enhance the existing capabilities for network analysis and to extend the algorithms to the level of cognitive abilities that form a basis for more efficient decision support system. In this paper we extend the fault sensitivity analysis for water distribution systems with the insights provided by state-of-the-art Machine Learning algorithms for data clustering and anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信