Chris Cargile, Gayathri Santhanakrishnan, Aspen Olmsted
{"title":"在考虑性能的情况下公开字典翻译","authors":"Chris Cargile, Gayathri Santhanakrishnan, Aspen Olmsted","doi":"10.1109/I-SOCIETY.2016.7854182","DOIUrl":null,"url":null,"abstract":"In this paper, we explore some of the challenges to extracting Wiktionary data so it can be used for machine translation. We provide a use case of considerations made in the development of a web service that transforms raw data in a wiktionary xml dump file into a web-service that provides language translation. Our case study focuses on the performance of this service in comparison to a service using remote calls to the Wiktionary API.","PeriodicalId":317605,"journal":{"name":"2016 International Conference on Information Society (i-Society)","volume":"36 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposing wiktionary translations with performance in mind\",\"authors\":\"Chris Cargile, Gayathri Santhanakrishnan, Aspen Olmsted\",\"doi\":\"10.1109/I-SOCIETY.2016.7854182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore some of the challenges to extracting Wiktionary data so it can be used for machine translation. We provide a use case of considerations made in the development of a web service that transforms raw data in a wiktionary xml dump file into a web-service that provides language translation. Our case study focuses on the performance of this service in comparison to a service using remote calls to the Wiktionary API.\",\"PeriodicalId\":317605,\"journal\":{\"name\":\"2016 International Conference on Information Society (i-Society)\",\"volume\":\"36 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Information Society (i-Society)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SOCIETY.2016.7854182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information Society (i-Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SOCIETY.2016.7854182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exposing wiktionary translations with performance in mind
In this paper, we explore some of the challenges to extracting Wiktionary data so it can be used for machine translation. We provide a use case of considerations made in the development of a web service that transforms raw data in a wiktionary xml dump file into a web-service that provides language translation. Our case study focuses on the performance of this service in comparison to a service using remote calls to the Wiktionary API.