第二类Volterra积分方程的解析方法

Issa Hamza, Ahmed Sh. Al-Atabi
{"title":"第二类Volterra积分方程的解析方法","authors":"Issa Hamza, Ahmed Sh. Al-Atabi","doi":"10.31185/wjcm.119","DOIUrl":null,"url":null,"abstract":"This paper discussed the analytic methods to solve Second order Volterra integral equations form using different methods. The domain decomposition method is the first technique. Depending on the hypothesis, the solution is by sequence. The second method is the successive approximation technique, which is used Picard iteration method. The third method used Laplace transformation. The modified decomposition technique is used as the fourth method. Depending on the Taylor series, the fifth method is called the series method. The last method solves the VIE using the functional correction technique called the variational iteration method. We introduce some examples to illustrate these methods. ","PeriodicalId":224730,"journal":{"name":"Wasit Journal of Computer and Mathematics Science","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Analytical Methods Of Volterra Integral Equations Of The Second Kind\",\"authors\":\"Issa Hamza, Ahmed Sh. Al-Atabi\",\"doi\":\"10.31185/wjcm.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discussed the analytic methods to solve Second order Volterra integral equations form using different methods. The domain decomposition method is the first technique. Depending on the hypothesis, the solution is by sequence. The second method is the successive approximation technique, which is used Picard iteration method. The third method used Laplace transformation. The modified decomposition technique is used as the fourth method. Depending on the Taylor series, the fifth method is called the series method. The last method solves the VIE using the functional correction technique called the variational iteration method. We introduce some examples to illustrate these methods. \",\"PeriodicalId\":224730,\"journal\":{\"name\":\"Wasit Journal of Computer and Mathematics Science\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Computer and Mathematics Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/wjcm.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Computer and Mathematics Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjcm.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了用不同的方法求解二阶Volterra积分方程的解析方法。领域分解法是第一种技术。根据假设,解是按顺序的。第二种方法是逐次逼近技术,采用皮卡德迭代法。第三种方法是拉普拉斯变换。第四种方法是改进的分解技术。根据泰勒级数,第五种方法被称为级数法。最后一种方法是利用变分迭代法的功能修正技术求解VIE。我们将介绍一些示例来说明这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Analytical Methods Of Volterra Integral Equations Of The Second Kind
This paper discussed the analytic methods to solve Second order Volterra integral equations form using different methods. The domain decomposition method is the first technique. Depending on the hypothesis, the solution is by sequence. The second method is the successive approximation technique, which is used Picard iteration method. The third method used Laplace transformation. The modified decomposition technique is used as the fourth method. Depending on the Taylor series, the fifth method is called the series method. The last method solves the VIE using the functional correction technique called the variational iteration method. We introduce some examples to illustrate these methods. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信