时间序列分类的联合熵方法

K. Safarihamid, A. Pourafzal, A. Fereidunian
{"title":"时间序列分类的联合熵方法","authors":"K. Safarihamid, A. Pourafzal, A. Fereidunian","doi":"10.1109/ICSPIS54653.2021.9729371","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of entropy-based classification of time-series into stochastic, chaotic, and periodic is addressed, followed by proposing an alternative joint-entropy approach to time series classification. These data-driven methods describe the behavior of a signal, using the association of the entropy of a time-series with emergence and self-organization, as complex systems characteristics. First, we deduce that certain groups of entropies, namely Fuzzy entropy, and Distribution entropy, share more similarities with emergence, while permutation and dispersion entropies could be associated with self-organization. Then, we utilize these resemblances to propose a joint-entropy alternative approach, in which one of the specific entropies is presented for each characteristic. Further, in simulations, we evaluated the performance of our proposed approach, comparing with single entropy methods, using different classifiers and decision boundaries. The results reveal an excellent performance of 98% accuracy for simultaneous utilization of the Distribution and Permutation entropies as the input features of Random Forest classifier, while this value is at best 89% for when only a single entropy is fed to the classifier.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Joint-Entropy Approach To Time-series Classification\",\"authors\":\"K. Safarihamid, A. Pourafzal, A. Fereidunian\",\"doi\":\"10.1109/ICSPIS54653.2021.9729371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of entropy-based classification of time-series into stochastic, chaotic, and periodic is addressed, followed by proposing an alternative joint-entropy approach to time series classification. These data-driven methods describe the behavior of a signal, using the association of the entropy of a time-series with emergence and self-organization, as complex systems characteristics. First, we deduce that certain groups of entropies, namely Fuzzy entropy, and Distribution entropy, share more similarities with emergence, while permutation and dispersion entropies could be associated with self-organization. Then, we utilize these resemblances to propose a joint-entropy alternative approach, in which one of the specific entropies is presented for each characteristic. Further, in simulations, we evaluated the performance of our proposed approach, comparing with single entropy methods, using different classifiers and decision boundaries. The results reveal an excellent performance of 98% accuracy for simultaneous utilization of the Distribution and Permutation entropies as the input features of Random Forest classifier, while this value is at best 89% for when only a single entropy is fed to the classifier.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了基于熵的时间序列随机、混沌和周期分类问题,并提出了一种联合熵的时间序列分类方法。这些数据驱动的方法描述信号的行为,利用时间序列的熵与涌现和自组织的关联,作为复杂系统的特征。首先,我们推断出某些熵组,即模糊熵和分布熵,与涌现有更多的相似之处,而排列熵和分散熵可能与自组织有关。然后,我们利用这些相似性提出了一种联合熵替代方法,其中为每个特征提供一个特定的熵。此外,在模拟中,我们评估了我们提出的方法的性能,与单熵方法进行比较,使用不同的分类器和决策边界。结果表明,同时使用分布和排列熵作为随机森林分类器的输入特征时,准确率达到98%,而当仅向分类器输入单个熵时,该值最多为89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Joint-Entropy Approach To Time-series Classification
In this paper, the problem of entropy-based classification of time-series into stochastic, chaotic, and periodic is addressed, followed by proposing an alternative joint-entropy approach to time series classification. These data-driven methods describe the behavior of a signal, using the association of the entropy of a time-series with emergence and self-organization, as complex systems characteristics. First, we deduce that certain groups of entropies, namely Fuzzy entropy, and Distribution entropy, share more similarities with emergence, while permutation and dispersion entropies could be associated with self-organization. Then, we utilize these resemblances to propose a joint-entropy alternative approach, in which one of the specific entropies is presented for each characteristic. Further, in simulations, we evaluated the performance of our proposed approach, comparing with single entropy methods, using different classifiers and decision boundaries. The results reveal an excellent performance of 98% accuracy for simultaneous utilization of the Distribution and Permutation entropies as the input features of Random Forest classifier, while this value is at best 89% for when only a single entropy is fed to the classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信