基于图切花分割和PHOG特征提取的鲁棒植物识别

K. Deepika, I. Ruth, S. Keerthana, B. Sathya Bama, S. Avvailakshmi, A. Vidhya
{"title":"基于图切花分割和PHOG特征提取的鲁棒植物识别","authors":"K. Deepika, I. Ruth, S. Keerthana, B. Sathya Bama, S. Avvailakshmi, A. Vidhya","doi":"10.1109/MVIP.2012.6428757","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient computer-aided plant recognition method based on plant flower images using shape and texture features intended mainly for medical industry, botanical gardening and cosmetic industry. The target flower is segmented from the complex background using Graph cut segmentation. Shape and texture features are extracted for the segmented image. In the shape domain, a feature descriptor is developed using Pyramidal Histogram of Oriented Gradients (PHOG) that represents the image shape. It captures the distribution of intensity gradients or edge directions. Then in the texture domain, the feature descriptor is developed using Pyramidal Local Binary Pattern (PLBP). The relevant images are retrieved from the database by matching the concatenated histogram of the PHOG and PLBP feature descriptors for the given input image. Results on a database of 200 sample images belonging to different types of plants show an increased efficiency of 96%.","PeriodicalId":170271,"journal":{"name":"2012 International Conference on Machine Vision and Image Processing (MVIP)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust plant recognition using Graph cut based flower segmentation and PHOG based feature extraction\",\"authors\":\"K. Deepika, I. Ruth, S. Keerthana, B. Sathya Bama, S. Avvailakshmi, A. Vidhya\",\"doi\":\"10.1109/MVIP.2012.6428757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient computer-aided plant recognition method based on plant flower images using shape and texture features intended mainly for medical industry, botanical gardening and cosmetic industry. The target flower is segmented from the complex background using Graph cut segmentation. Shape and texture features are extracted for the segmented image. In the shape domain, a feature descriptor is developed using Pyramidal Histogram of Oriented Gradients (PHOG) that represents the image shape. It captures the distribution of intensity gradients or edge directions. Then in the texture domain, the feature descriptor is developed using Pyramidal Local Binary Pattern (PLBP). The relevant images are retrieved from the database by matching the concatenated histogram of the PHOG and PLBP feature descriptors for the given input image. Results on a database of 200 sample images belonging to different types of plants show an increased efficiency of 96%.\",\"PeriodicalId\":170271,\"journal\":{\"name\":\"2012 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP.2012.6428757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP.2012.6428757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于植物花图像的基于形状和纹理特征的计算机辅助植物识别方法,主要用于医疗、园艺和化妆品行业。利用图切分割从复杂背景中分割出目标花朵。对分割后的图像提取形状和纹理特征。在形状域,利用有向梯度的金字塔直方图(PHOG)建立了一个特征描述符,表示图像的形状。它捕获强度梯度或边缘方向的分布。然后在纹理域,利用金字塔局部二值模式(PLBP)构建特征描述符;通过匹配给定输入图像的PHOG和PLBP特征描述符的串联直方图,从数据库中检索相关图像。在一个包含200个不同类型植物的样本图像的数据库中,结果显示效率提高了96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust plant recognition using Graph cut based flower segmentation and PHOG based feature extraction
This paper proposes an efficient computer-aided plant recognition method based on plant flower images using shape and texture features intended mainly for medical industry, botanical gardening and cosmetic industry. The target flower is segmented from the complex background using Graph cut segmentation. Shape and texture features are extracted for the segmented image. In the shape domain, a feature descriptor is developed using Pyramidal Histogram of Oriented Gradients (PHOG) that represents the image shape. It captures the distribution of intensity gradients or edge directions. Then in the texture domain, the feature descriptor is developed using Pyramidal Local Binary Pattern (PLBP). The relevant images are retrieved from the database by matching the concatenated histogram of the PHOG and PLBP feature descriptors for the given input image. Results on a database of 200 sample images belonging to different types of plants show an increased efficiency of 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信