特征循环、微局部包和上同调包

Nicol'as Arancibia
{"title":"特征循环、微局部包和上同调包","authors":"Nicol'as Arancibia","doi":"10.1090/tran/8492","DOIUrl":null,"url":null,"abstract":"Relying on work of Kashiwara-Schapira and Schmid-Vilonen, we describe the behaviour of characteristic cycles with respect to the operation of geometric induction, the geometric counterpart of taking parabolic or cohomological induction in representation theory. By doing this, we are able to describe the characteristic cycle associated to an induced representation in terms of the characteristic cycle of the representation being induced.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characteristic cycles, micro local packets and packets with cohomology\",\"authors\":\"Nicol'as Arancibia\",\"doi\":\"10.1090/tran/8492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relying on work of Kashiwara-Schapira and Schmid-Vilonen, we describe the behaviour of characteristic cycles with respect to the operation of geometric induction, the geometric counterpart of taking parabolic or cohomological induction in representation theory. By doing this, we are able to describe the characteristic cycle associated to an induced representation in terms of the characteristic cycle of the representation being induced.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

根据Kashiwara-Schapira和Schmid-Vilonen的工作,我们描述了特征环在几何归纳法运算中的行为,几何归纳法是表示理论中采用抛物或上同调归纳法的几何对应。通过这样做,我们能够根据被诱导表征的特征周期来描述与诱导表征相关的特征周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic cycles, micro local packets and packets with cohomology
Relying on work of Kashiwara-Schapira and Schmid-Vilonen, we describe the behaviour of characteristic cycles with respect to the operation of geometric induction, the geometric counterpart of taking parabolic or cohomological induction in representation theory. By doing this, we are able to describe the characteristic cycle associated to an induced representation in terms of the characteristic cycle of the representation being induced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信