随机潮汐动力学方程的平均原理

Xiuwei Yin, Guangjun Shen null, Jiang-Lun Wu
{"title":"随机潮汐动力学方程的平均原理","authors":"Xiuwei Yin, Guangjun Shen null, Jiang-Lun Wu","doi":"10.4208/cmaa.2022-0019","DOIUrl":null,"url":null,"abstract":". In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii’s time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square.","PeriodicalId":371957,"journal":{"name":"Communications in Mathematical Analysis and Applications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging Principle for Stochastic Tidal Dynamics Equations\",\"authors\":\"Xiuwei Yin, Guangjun Shen null, Jiang-Lun Wu\",\"doi\":\"10.4208/cmaa.2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii’s time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square.\",\"PeriodicalId\":371957,\"journal\":{\"name\":\"Communications in Mathematical Analysis and Applications\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/cmaa.2022-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cmaa.2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。本文旨在建立随机潮汐动力学方程的强平均原理。平均原理是研究非线性动力系统定性分析的一种有效方法。在适当的假设条件下,利用Khasminkii的时间离散化方法,导出了一个强平均原理,表明随机潮汐动力学方程的解可以用平均随机方程组的解在均方收敛意义上逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaging Principle for Stochastic Tidal Dynamics Equations
. In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii’s time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信