{"title":"快速响应Schmidt-Boelter传热计的数据缩减方法","authors":"John C. Adams, C. Kidd","doi":"10.1115/imece1999-1103","DOIUrl":null,"url":null,"abstract":"\n Transient heat-transfer data have recently been obtained in hypersonic wind tunnels at the Arnold Engineering Development Center (AEDC) with miniaturized fast-response Schmidt-Boelter gages. These sensors have time constants in the 10- to 15-msec range, but have response characteristics that are usually less than first-order. This presents a requirement for a general data reduction method to prevent degradation of the accuracy of the experimental data. A consistent nonambiguous data reduction methodology for fast-response Schmidt-Boelter heat-transfer gages is presented which is easy to implement in an algorithmic fashion. Timewise correction of measured Schmidt-Boelter gage heat flux is no more difficult than that involved in a classical first-order system (Gardon gage), and only involves the determination of a characteristic time measure of the integrated energy deficiency inherent in the gage response. This characteristic time measure is easily determined from the gage response characterization to a step input heat flux by numerical integration of the response versus time data.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Reduction Methodology for Fast-Response Schmidt-Boelter Heat-Transfer Gages\",\"authors\":\"John C. Adams, C. Kidd\",\"doi\":\"10.1115/imece1999-1103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Transient heat-transfer data have recently been obtained in hypersonic wind tunnels at the Arnold Engineering Development Center (AEDC) with miniaturized fast-response Schmidt-Boelter gages. These sensors have time constants in the 10- to 15-msec range, but have response characteristics that are usually less than first-order. This presents a requirement for a general data reduction method to prevent degradation of the accuracy of the experimental data. A consistent nonambiguous data reduction methodology for fast-response Schmidt-Boelter heat-transfer gages is presented which is easy to implement in an algorithmic fashion. Timewise correction of measured Schmidt-Boelter gage heat flux is no more difficult than that involved in a classical first-order system (Gardon gage), and only involves the determination of a characteristic time measure of the integrated energy deficiency inherent in the gage response. This characteristic time measure is easily determined from the gage response characterization to a step input heat flux by numerical integration of the response versus time data.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-1103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Reduction Methodology for Fast-Response Schmidt-Boelter Heat-Transfer Gages
Transient heat-transfer data have recently been obtained in hypersonic wind tunnels at the Arnold Engineering Development Center (AEDC) with miniaturized fast-response Schmidt-Boelter gages. These sensors have time constants in the 10- to 15-msec range, but have response characteristics that are usually less than first-order. This presents a requirement for a general data reduction method to prevent degradation of the accuracy of the experimental data. A consistent nonambiguous data reduction methodology for fast-response Schmidt-Boelter heat-transfer gages is presented which is easy to implement in an algorithmic fashion. Timewise correction of measured Schmidt-Boelter gage heat flux is no more difficult than that involved in a classical first-order system (Gardon gage), and only involves the determination of a characteristic time measure of the integrated energy deficiency inherent in the gage response. This characteristic time measure is easily determined from the gage response characterization to a step input heat flux by numerical integration of the response versus time data.