你为什么要推荐我那个?

Aish Fenton
{"title":"你为什么要推荐我那个?","authors":"Aish Fenton","doi":"10.1145/2948674.2948681","DOIUrl":null,"url":null,"abstract":"With so many advances in machine learning recently, it's not unreasonable to ask: why aren't my recommendations perfect by now? Aish provides a walkthrough of the open problems in the area of recommender systems, especially as they apply to Netflix's personalization and recommender algorithms. He also provides a brief overview of recommender systems, and sketches out some tentative solutions for the problems he presents.","PeriodicalId":165112,"journal":{"name":"Proceedings of the Third International Workshop on Exploratory Search in Databases and the Web","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why would you recommend me that!?\",\"authors\":\"Aish Fenton\",\"doi\":\"10.1145/2948674.2948681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With so many advances in machine learning recently, it's not unreasonable to ask: why aren't my recommendations perfect by now? Aish provides a walkthrough of the open problems in the area of recommender systems, especially as they apply to Netflix's personalization and recommender algorithms. He also provides a brief overview of recommender systems, and sketches out some tentative solutions for the problems he presents.\",\"PeriodicalId\":165112,\"journal\":{\"name\":\"Proceedings of the Third International Workshop on Exploratory Search in Databases and the Web\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International Workshop on Exploratory Search in Databases and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2948674.2948681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Exploratory Search in Databases and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2948674.2948681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近机器学习取得了如此多的进步,人们不禁要问:为什么我的建议到现在还不够完美?Aish提供了推荐系统领域的开放问题的攻略,特别是当它们应用于Netflix的个性化和推荐算法时。他还简要概述了推荐系统,并为他提出的问题提出了一些初步的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why would you recommend me that!?
With so many advances in machine learning recently, it's not unreasonable to ask: why aren't my recommendations perfect by now? Aish provides a walkthrough of the open problems in the area of recommender systems, especially as they apply to Netflix's personalization and recommender algorithms. He also provides a brief overview of recommender systems, and sketches out some tentative solutions for the problems he presents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信