基于神经模糊系统和粒子群优化算法的电力系统监控稳定控制

A. Sallama, M. Abbod, G. Taylor
{"title":"基于神经模糊系统和粒子群优化算法的电力系统监控稳定控制","authors":"A. Sallama, M. Abbod, G. Taylor","doi":"10.1109/UPEC.2014.6934678","DOIUrl":null,"url":null,"abstract":"This paper describes the design and implementation of advanced Supervisory Power System Stability Controller (SPSSC) using Neuro-fuzzy system, and MATLAB S-function tool where the controller is taught from data generated by simulating the system for the optimal control regime. The controller is compared to a multi-band control system which is utilized to stabilize the system for different operating conditions. Simulation results show that the supervisory power system stability controller has produced better control action in stabilizing the system for conditions such as: normal, after disturbance in the electrical national grid as a result of changing of the plant capacity like renewable energy units, high load reduction or in the worst case of fault in operating the system, e.g. phase short circuit to ground. The new controller led to making the settling time and overshoot after disturbances proved to be lower which means that the system can reach to stability in the shortest time and with minimum disruption. Such behaviour will improve the quality of the provided power to the power grid.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Supervisory Power System Stability Control using Neuro-fuzzy system and particle swarm optimization algorithm\",\"authors\":\"A. Sallama, M. Abbod, G. Taylor\",\"doi\":\"10.1109/UPEC.2014.6934678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design and implementation of advanced Supervisory Power System Stability Controller (SPSSC) using Neuro-fuzzy system, and MATLAB S-function tool where the controller is taught from data generated by simulating the system for the optimal control regime. The controller is compared to a multi-band control system which is utilized to stabilize the system for different operating conditions. Simulation results show that the supervisory power system stability controller has produced better control action in stabilizing the system for conditions such as: normal, after disturbance in the electrical national grid as a result of changing of the plant capacity like renewable energy units, high load reduction or in the worst case of fault in operating the system, e.g. phase short circuit to ground. The new controller led to making the settling time and overshoot after disturbances proved to be lower which means that the system can reach to stability in the shortest time and with minimum disruption. Such behaviour will improve the quality of the provided power to the power grid.\",\"PeriodicalId\":414838,\"journal\":{\"name\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2014.6934678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了利用神经模糊系统和MATLAB s函数工具设计和实现高级监控电力系统稳定控制器(SPSSC),其中控制器通过模拟系统生成的数据来学习最优控制状态。将该控制器比作一个多波段控制系统,用于在不同运行条件下稳定系统。仿真结果表明,该监控型电力系统稳定控制器在正常、可再生能源机组等电厂容量变化引起的国家电网扰动后、高负荷减载或系统运行故障的最坏情况下(如相接地短路)均能产生较好的稳定控制作用。该控制器使系统在扰动后的沉降时间和超调量更小,从而使系统在最短的时间内以最小的扰动达到稳定。这种行为将提高向电网提供电力的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervisory Power System Stability Control using Neuro-fuzzy system and particle swarm optimization algorithm
This paper describes the design and implementation of advanced Supervisory Power System Stability Controller (SPSSC) using Neuro-fuzzy system, and MATLAB S-function tool where the controller is taught from data generated by simulating the system for the optimal control regime. The controller is compared to a multi-band control system which is utilized to stabilize the system for different operating conditions. Simulation results show that the supervisory power system stability controller has produced better control action in stabilizing the system for conditions such as: normal, after disturbance in the electrical national grid as a result of changing of the plant capacity like renewable energy units, high load reduction or in the worst case of fault in operating the system, e.g. phase short circuit to ground. The new controller led to making the settling time and overshoot after disturbances proved to be lower which means that the system can reach to stability in the shortest time and with minimum disruption. Such behaviour will improve the quality of the provided power to the power grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信