在混合平台上分析动态的基于任务的应用程序:一种敏捷的脚本方法

V. G. Pinto, Luka Stanisic, Arnaud Legrand, L. Schnorr, Samuel Thibault, Vincent Danjean
{"title":"在混合平台上分析动态的基于任务的应用程序:一种敏捷的脚本方法","authors":"V. G. Pinto, Luka Stanisic, Arnaud Legrand, L. Schnorr, Samuel Thibault, Vincent Danjean","doi":"10.1109/vpa.2016.008","DOIUrl":null,"url":null,"abstract":"In this paper, we present visual analysis techniques to evaluate the performance of HPC task-based applications on hybrid architectures. Our approach is based on composing modern data analysis tools (pjdump, R, ggplot2, plotly), enabling an agile and flexible scripting framework with minor development cost. We validate our proposal by analyzing traces from the full-fledged implementation of the Cholesky decomposition available in the MORSE library running on a hybrid (CPU/GPU) platform. The analysis compares two different workloads and three different task schedulers from the StarPU runtime system. Our analysis based on composite views allows to identify allocation mistakes, priority problems in scheduling decisions, GPU tasks anomalies causing bad performance, and critical path issues.","PeriodicalId":166523,"journal":{"name":"2016 Third Workshop on Visual Performance Analysis (VPA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach\",\"authors\":\"V. G. Pinto, Luka Stanisic, Arnaud Legrand, L. Schnorr, Samuel Thibault, Vincent Danjean\",\"doi\":\"10.1109/vpa.2016.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present visual analysis techniques to evaluate the performance of HPC task-based applications on hybrid architectures. Our approach is based on composing modern data analysis tools (pjdump, R, ggplot2, plotly), enabling an agile and flexible scripting framework with minor development cost. We validate our proposal by analyzing traces from the full-fledged implementation of the Cholesky decomposition available in the MORSE library running on a hybrid (CPU/GPU) platform. The analysis compares two different workloads and three different task schedulers from the StarPU runtime system. Our analysis based on composite views allows to identify allocation mistakes, priority problems in scheduling decisions, GPU tasks anomalies causing bad performance, and critical path issues.\",\"PeriodicalId\":166523,\"journal\":{\"name\":\"2016 Third Workshop on Visual Performance Analysis (VPA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Third Workshop on Visual Performance Analysis (VPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/vpa.2016.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Third Workshop on Visual Performance Analysis (VPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vpa.2016.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们提出了可视化分析技术来评估基于混合架构的高性能计算任务应用程序的性能。我们的方法是基于组合现代数据分析工具(pjdump, R, ggplot2, plotly),以较小的开发成本实现敏捷和灵活的脚本框架。我们通过分析运行在混合(CPU/GPU)平台上的MORSE库中可用的Cholesky分解的完整实现的痕迹来验证我们的建议。该分析比较了来自StarPU运行时系统的两种不同的工作负载和三种不同的任务调度器。我们基于复合视图的分析可以识别分配错误、调度决策中的优先级问题、导致性能低下的GPU任务异常以及关键路径问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach
In this paper, we present visual analysis techniques to evaluate the performance of HPC task-based applications on hybrid architectures. Our approach is based on composing modern data analysis tools (pjdump, R, ggplot2, plotly), enabling an agile and flexible scripting framework with minor development cost. We validate our proposal by analyzing traces from the full-fledged implementation of the Cholesky decomposition available in the MORSE library running on a hybrid (CPU/GPU) platform. The analysis compares two different workloads and three different task schedulers from the StarPU runtime system. Our analysis based on composite views allows to identify allocation mistakes, priority problems in scheduling decisions, GPU tasks anomalies causing bad performance, and critical path issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信