Priveen Raj Santha Moorthy, A. Chatterjee, A. Younessi, Amitava Ghosh
{"title":"马来西亚近海马来盆地储层压实和地表沉降评估优化油田开发规划","authors":"Priveen Raj Santha Moorthy, A. Chatterjee, A. Younessi, Amitava Ghosh","doi":"10.2118/209895-ms","DOIUrl":null,"url":null,"abstract":"\n A geomechanical model calibrated to field data can be used to analyse the potentially severe impact of reservoir compaction on production. However, field data acquisition programmes can be expensive, and optimal reservoir monitoring design necessitates an understanding of reservoir dynamics. Forward geomechanical models can help establishing the appropriate field data gathering approach while reducing expenses and maximising value for model calibration. Significant reservoir compaction and surface subsidence have potential risks for fault reactivation, integrity of wells and surface facilities. This paper presents an integrated approach and workflow that combines geomechanically derived data, reservoir geometry and production data to predict reservoir compaction and surface subsidence throughout the life of the field. The results provide an essential understanding on the dynamics of production induced changes in effective stresses and formation mechanical properties and their impacts on the field development planning, risks mitigation and provision of contingencies for well construction and downhole and surface field monitoring requirements.","PeriodicalId":385340,"journal":{"name":"Day 1 Tue, August 09, 2022","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reservoir Compaction and Surface Subsidence Assessment to Optimize Field Development Planning in Offshore Malay Basin, Malaysia\",\"authors\":\"Priveen Raj Santha Moorthy, A. Chatterjee, A. Younessi, Amitava Ghosh\",\"doi\":\"10.2118/209895-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A geomechanical model calibrated to field data can be used to analyse the potentially severe impact of reservoir compaction on production. However, field data acquisition programmes can be expensive, and optimal reservoir monitoring design necessitates an understanding of reservoir dynamics. Forward geomechanical models can help establishing the appropriate field data gathering approach while reducing expenses and maximising value for model calibration. Significant reservoir compaction and surface subsidence have potential risks for fault reactivation, integrity of wells and surface facilities. This paper presents an integrated approach and workflow that combines geomechanically derived data, reservoir geometry and production data to predict reservoir compaction and surface subsidence throughout the life of the field. The results provide an essential understanding on the dynamics of production induced changes in effective stresses and formation mechanical properties and their impacts on the field development planning, risks mitigation and provision of contingencies for well construction and downhole and surface field monitoring requirements.\",\"PeriodicalId\":385340,\"journal\":{\"name\":\"Day 1 Tue, August 09, 2022\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, August 09, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/209895-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, August 09, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209895-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reservoir Compaction and Surface Subsidence Assessment to Optimize Field Development Planning in Offshore Malay Basin, Malaysia
A geomechanical model calibrated to field data can be used to analyse the potentially severe impact of reservoir compaction on production. However, field data acquisition programmes can be expensive, and optimal reservoir monitoring design necessitates an understanding of reservoir dynamics. Forward geomechanical models can help establishing the appropriate field data gathering approach while reducing expenses and maximising value for model calibration. Significant reservoir compaction and surface subsidence have potential risks for fault reactivation, integrity of wells and surface facilities. This paper presents an integrated approach and workflow that combines geomechanically derived data, reservoir geometry and production data to predict reservoir compaction and surface subsidence throughout the life of the field. The results provide an essential understanding on the dynamics of production induced changes in effective stresses and formation mechanical properties and their impacts on the field development planning, risks mitigation and provision of contingencies for well construction and downhole and surface field monitoring requirements.