行人可探测性:用机器视觉预测人类感知性能

David Engel, Cristóbal Curio
{"title":"行人可探测性:用机器视觉预测人类感知性能","authors":"David Engel, Cristóbal Curio","doi":"10.1109/IVS.2011.5940445","DOIUrl":null,"url":null,"abstract":"How likely is it that a driver notices a person standing on the side of the road? In this paper we introduce the concept of pedestrian detectability. It is a measure of how probable it is that a human observer perceives pedestrians in an image. We acquire a dataset of pedestrians with their associated detectabilities in a rapid detection experiment using images of street scenes. On this dataset we learn a regression function that allows us to predict human detectabilities from an optimized set of image and contextual features. We exploit this function to infer the optimal focus of attention for pedestrian detection. With this combination of human perception and machine vision we propose a method we deem useful for the optimization of Human-Machine-Interfaces in driver assistance systems.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Pedestrian detectability: Predicting human perception performance with machine vision\",\"authors\":\"David Engel, Cristóbal Curio\",\"doi\":\"10.1109/IVS.2011.5940445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How likely is it that a driver notices a person standing on the side of the road? In this paper we introduce the concept of pedestrian detectability. It is a measure of how probable it is that a human observer perceives pedestrians in an image. We acquire a dataset of pedestrians with their associated detectabilities in a rapid detection experiment using images of street scenes. On this dataset we learn a regression function that allows us to predict human detectabilities from an optimized set of image and contextual features. We exploit this function to infer the optimal focus of attention for pedestrian detection. With this combination of human perception and machine vision we propose a method we deem useful for the optimization of Human-Machine-Interfaces in driver assistance systems.\",\"PeriodicalId\":117811,\"journal\":{\"name\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2011.5940445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

司机注意到一个人站在路边的可能性有多大?本文引入了行人可检测性的概念。它衡量的是人类观察者在图像中感知行人的可能性有多大。我们在使用街道场景图像的快速检测实验中获得了行人及其相关可检测性的数据集。在这个数据集上,我们学习了一个回归函数,它允许我们从一组优化的图像和上下文特征中预测人类的可检测性。我们利用这个函数来推断行人检测的最佳关注焦点。通过人类感知和机器视觉的结合,我们提出了一种我们认为对驾驶员辅助系统人机界面优化有用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian detectability: Predicting human perception performance with machine vision
How likely is it that a driver notices a person standing on the side of the road? In this paper we introduce the concept of pedestrian detectability. It is a measure of how probable it is that a human observer perceives pedestrians in an image. We acquire a dataset of pedestrians with their associated detectabilities in a rapid detection experiment using images of street scenes. On this dataset we learn a regression function that allows us to predict human detectabilities from an optimized set of image and contextual features. We exploit this function to infer the optimal focus of attention for pedestrian detection. With this combination of human perception and machine vision we propose a method we deem useful for the optimization of Human-Machine-Interfaces in driver assistance systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信