{"title":"抛物柱面逼近的一种新型1自由度可展机构","authors":"Hang Xiao, S. Lu, Xilun Ding","doi":"10.1115/detc2019-97806","DOIUrl":null,"url":null,"abstract":"\n This paper presents a novel deployable mechanism for approximating the parabolic cylindrical surface. The proposed mechanism, which can deploy and fold synchronously in the radial and axial directions, is constructed by double four-bar linkages and scissor linkages. In the fully deployed configuration, the mechanism can approximate a cylindrical surface. It can also be folded compactly into a bundle. The radial and axial deployable mechanisms are described and their position kinematics are solved. A synchronous mechanism is designed to ensure the synchronous movement of the radial and axial mechanisms. Geometric parameters of the mechanism for approximating a given parabolic cylindrical surface are obtained. The magnification ratio of the designed mechanism is calculated. The best choice of actuator is determined through static-load analysis.","PeriodicalId":211780,"journal":{"name":"Volume 5B: 43rd Mechanisms and Robotics Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel 1-DOF Deployable Mechanism for Parabolic Cylindrical Surface Approximation\",\"authors\":\"Hang Xiao, S. Lu, Xilun Ding\",\"doi\":\"10.1115/detc2019-97806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a novel deployable mechanism for approximating the parabolic cylindrical surface. The proposed mechanism, which can deploy and fold synchronously in the radial and axial directions, is constructed by double four-bar linkages and scissor linkages. In the fully deployed configuration, the mechanism can approximate a cylindrical surface. It can also be folded compactly into a bundle. The radial and axial deployable mechanisms are described and their position kinematics are solved. A synchronous mechanism is designed to ensure the synchronous movement of the radial and axial mechanisms. Geometric parameters of the mechanism for approximating a given parabolic cylindrical surface are obtained. The magnification ratio of the designed mechanism is calculated. The best choice of actuator is determined through static-load analysis.\",\"PeriodicalId\":211780,\"journal\":{\"name\":\"Volume 5B: 43rd Mechanisms and Robotics Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5B: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel 1-DOF Deployable Mechanism for Parabolic Cylindrical Surface Approximation
This paper presents a novel deployable mechanism for approximating the parabolic cylindrical surface. The proposed mechanism, which can deploy and fold synchronously in the radial and axial directions, is constructed by double four-bar linkages and scissor linkages. In the fully deployed configuration, the mechanism can approximate a cylindrical surface. It can also be folded compactly into a bundle. The radial and axial deployable mechanisms are described and their position kinematics are solved. A synchronous mechanism is designed to ensure the synchronous movement of the radial and axial mechanisms. Geometric parameters of the mechanism for approximating a given parabolic cylindrical surface are obtained. The magnification ratio of the designed mechanism is calculated. The best choice of actuator is determined through static-load analysis.