{"title":"弹性智能计量基础设施的自动配置综合","authors":"M. Rahman, Amarjit Datta, E. Al-Shaer","doi":"10.4108/eai.10-9-2021.170948","DOIUrl":null,"url":null,"abstract":"An Advanced Metering Infrastructure (AMI) comprises a large number of smart meters along with heterogeneous cyber-physical components that are interconnected through di ff erent communication media, protocols, and delivery modes for transmitting usage reports or control commands between meters and the utility. Due to misconfigurations or lack of security controls, there can be operational disruptions leading to economic damage in an AMI. Therefore, the resiliency of an AMI is crucial. In this paper, we present an automated configuration synthesis framework that mitigates potential threats by eliminating misconfigurations and keeps the damage limited under contingencies by introducing robustness. We formally model AMI configurations, including operational integrity and robustness properties considering the interdependencies among AMI devices’ configurations, attacks or failures, and resiliency guidelines. We implement the model using Satisfiability Modulo Theories (SMT) and demonstrate its execution on an example case study that illustrates the synthesis of AMI configurations satisfying resiliency requirements. We also evaluate the framework on synthetic AMI networks.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automated Configuration Synthesis for Resilient Smart Metering Infrastructure\",\"authors\":\"M. Rahman, Amarjit Datta, E. Al-Shaer\",\"doi\":\"10.4108/eai.10-9-2021.170948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Advanced Metering Infrastructure (AMI) comprises a large number of smart meters along with heterogeneous cyber-physical components that are interconnected through di ff erent communication media, protocols, and delivery modes for transmitting usage reports or control commands between meters and the utility. Due to misconfigurations or lack of security controls, there can be operational disruptions leading to economic damage in an AMI. Therefore, the resiliency of an AMI is crucial. In this paper, we present an automated configuration synthesis framework that mitigates potential threats by eliminating misconfigurations and keeps the damage limited under contingencies by introducing robustness. We formally model AMI configurations, including operational integrity and robustness properties considering the interdependencies among AMI devices’ configurations, attacks or failures, and resiliency guidelines. We implement the model using Satisfiability Modulo Theories (SMT) and demonstrate its execution on an example case study that illustrates the synthesis of AMI configurations satisfying resiliency requirements. We also evaluate the framework on synthetic AMI networks.\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.10-9-2021.170948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.10-9-2021.170948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Configuration Synthesis for Resilient Smart Metering Infrastructure
An Advanced Metering Infrastructure (AMI) comprises a large number of smart meters along with heterogeneous cyber-physical components that are interconnected through di ff erent communication media, protocols, and delivery modes for transmitting usage reports or control commands between meters and the utility. Due to misconfigurations or lack of security controls, there can be operational disruptions leading to economic damage in an AMI. Therefore, the resiliency of an AMI is crucial. In this paper, we present an automated configuration synthesis framework that mitigates potential threats by eliminating misconfigurations and keeps the damage limited under contingencies by introducing robustness. We formally model AMI configurations, including operational integrity and robustness properties considering the interdependencies among AMI devices’ configurations, attacks or failures, and resiliency guidelines. We implement the model using Satisfiability Modulo Theories (SMT) and demonstrate its execution on an example case study that illustrates the synthesis of AMI configurations satisfying resiliency requirements. We also evaluate the framework on synthetic AMI networks.