使用高斯混合和广义高斯模型编码

Jonathan K. Su, R. Mersereau
{"title":"使用高斯混合和广义高斯模型编码","authors":"Jonathan K. Su, R. Mersereau","doi":"10.1109/ICIP.1996.559472","DOIUrl":null,"url":null,"abstract":"In transform image coding, the histograms of transform coefficients can be approximately modeled by generalized Gaussian (GG) random variables. However, the GG models may not fit the DC distribution. One approach uses DPCM for the DC data, which greatly complicates bit allocation; another assumes a single Gaussian (SG) model, which may be a poor model. As an alternative, this paper proposes a finite Gaussian mixture (GM) model for the DC data. The GM approach does not require tweaking of the DPCM quantizer stepsize and can allocate bits optimally between the DC and AC data; it is also more flexible than the SG model. Experimentally, the GM method matched DPCM at medium rates and gave 1-5 dB higher PSNR at low and high rates. The GM method also matched the performance of the SG model and gave 0.5-2 dB higher PSNR when the SG assumption failed.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"21 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Coding using Gaussian mixture and generalized Gaussian models\",\"authors\":\"Jonathan K. Su, R. Mersereau\",\"doi\":\"10.1109/ICIP.1996.559472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In transform image coding, the histograms of transform coefficients can be approximately modeled by generalized Gaussian (GG) random variables. However, the GG models may not fit the DC distribution. One approach uses DPCM for the DC data, which greatly complicates bit allocation; another assumes a single Gaussian (SG) model, which may be a poor model. As an alternative, this paper proposes a finite Gaussian mixture (GM) model for the DC data. The GM approach does not require tweaking of the DPCM quantizer stepsize and can allocate bits optimally between the DC and AC data; it is also more flexible than the SG model. Experimentally, the GM method matched DPCM at medium rates and gave 1-5 dB higher PSNR at low and high rates. The GM method also matched the performance of the SG model and gave 0.5-2 dB higher PSNR when the SG assumption failed.\",\"PeriodicalId\":192947,\"journal\":{\"name\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"volume\":\"21 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1996.559472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.559472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在变换图像编码中,变换系数的直方图可以用广义高斯(GG)随机变量近似建模。然而,GG模型可能不适合DC分布。一种方法是对直流数据使用DPCM,这使比特分配变得非常复杂;另一种假设是单一高斯(SG)模型,这可能是一个糟糕的模型。作为一种替代方案,本文提出了一种有限高斯混合(GM)模型来处理直流数据。GM方法不需要调整DPCM量化器的步长,并且可以在直流和交流数据之间最优地分配比特;它也比SG模型更灵活。在实验中,GM方法在中等速率下与DPCM匹配,在低速率和高速率下的PSNR都提高了1-5 dB。当SG假设失效时,GM方法的PSNR比SG模型高0.5-2 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coding using Gaussian mixture and generalized Gaussian models
In transform image coding, the histograms of transform coefficients can be approximately modeled by generalized Gaussian (GG) random variables. However, the GG models may not fit the DC distribution. One approach uses DPCM for the DC data, which greatly complicates bit allocation; another assumes a single Gaussian (SG) model, which may be a poor model. As an alternative, this paper proposes a finite Gaussian mixture (GM) model for the DC data. The GM approach does not require tweaking of the DPCM quantizer stepsize and can allocate bits optimally between the DC and AC data; it is also more flexible than the SG model. Experimentally, the GM method matched DPCM at medium rates and gave 1-5 dB higher PSNR at low and high rates. The GM method also matched the performance of the SG model and gave 0.5-2 dB higher PSNR when the SG assumption failed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信