基于线性神经网络的感应电机无传感器控制

M. Cirrincione, M. Pucci, G. Cirrincione, G. Capolino
{"title":"基于线性神经网络的感应电机无传感器控制","authors":"M. Cirrincione, M. Pucci, G. Cirrincione, G. Capolino","doi":"10.1109/EPEPEMC.2006.4778670","DOIUrl":null,"url":null,"abstract":"This paper summarizes the research activity of the authors in the field of sensorless control of induction machine drives based on new linear neural techniques. In particular it describes and compares three speed observers: the MCA EXIN + MRAS Observer, the MCA EXIN + Reduced Order Observer and the TLS Full-order Luenberger Adaptive Observer. Common to all of three observers is the on-line estimation of the speed by a new linear neural technique, which solves in a recursive way a Total Least-Squares problem: one of them employs the TLS EXIN neuron and the other two the MCA EXIN + neuron, which is an improvement of the former. The speed observers have been verified in numerical simulations and experimentally on a test setup and have been also compared experimentally with one another.","PeriodicalId":401288,"journal":{"name":"2006 12th International Power Electronics and Motion Control Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sensorless Control of Induction Motor Drives by New Linear Neural Techniques\",\"authors\":\"M. Cirrincione, M. Pucci, G. Cirrincione, G. Capolino\",\"doi\":\"10.1109/EPEPEMC.2006.4778670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarizes the research activity of the authors in the field of sensorless control of induction machine drives based on new linear neural techniques. In particular it describes and compares three speed observers: the MCA EXIN + MRAS Observer, the MCA EXIN + Reduced Order Observer and the TLS Full-order Luenberger Adaptive Observer. Common to all of three observers is the on-line estimation of the speed by a new linear neural technique, which solves in a recursive way a Total Least-Squares problem: one of them employs the TLS EXIN neuron and the other two the MCA EXIN + neuron, which is an improvement of the former. The speed observers have been verified in numerical simulations and experimentally on a test setup and have been also compared experimentally with one another.\",\"PeriodicalId\":401288,\"journal\":{\"name\":\"2006 12th International Power Electronics and Motion Control Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPEMC.2006.4778670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2006.4778670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文综述了作者在基于新型线性神经网络技术的感应电机无传感器控制领域的研究工作。它特别描述并比较了三种速度观测器:MCA EXIN + MRAS观测器,MCA EXIN +降阶观测器和TLS全阶Luenberger自适应观测器。这三种观测器的共同之处是采用一种新的线性神经网络技术在线估计速度,该技术以递归的方式解决了一个总最小二乘问题:其中一个使用TLS EXIN神经元,另两个使用MCA EXIN +神经元,这是前者的改进。在数值模拟和实验装置上对速度观测器进行了验证,并进行了实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensorless Control of Induction Motor Drives by New Linear Neural Techniques
This paper summarizes the research activity of the authors in the field of sensorless control of induction machine drives based on new linear neural techniques. In particular it describes and compares three speed observers: the MCA EXIN + MRAS Observer, the MCA EXIN + Reduced Order Observer and the TLS Full-order Luenberger Adaptive Observer. Common to all of three observers is the on-line estimation of the speed by a new linear neural technique, which solves in a recursive way a Total Least-Squares problem: one of them employs the TLS EXIN neuron and the other two the MCA EXIN + neuron, which is an improvement of the former. The speed observers have been verified in numerical simulations and experimentally on a test setup and have been also compared experimentally with one another.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信