{"title":"隐式给定核函数形式下Parzen型非参数概率密度估计的修正","authors":"A. V. Lapko, V. A. Lapko, E. A. Yuronen","doi":"10.1109/FAREASTCON.2018.8602807","DOIUrl":null,"url":null,"abstract":"The new nonparametric probability density estimation based on use of the smoothing operator is offered and investigated. It has smaller dispersion in comparison with probability density estimation like Rosenblatt-Parzen.","PeriodicalId":177690,"journal":{"name":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","volume":"29 6 Suppl 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of Nonparametric Probability Density Estimation of Parzen's Type with Implicitly Given form of Kernel Function\",\"authors\":\"A. V. Lapko, V. A. Lapko, E. A. Yuronen\",\"doi\":\"10.1109/FAREASTCON.2018.8602807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new nonparametric probability density estimation based on use of the smoothing operator is offered and investigated. It has smaller dispersion in comparison with probability density estimation like Rosenblatt-Parzen.\",\"PeriodicalId\":177690,\"journal\":{\"name\":\"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"volume\":\"29 6 Suppl 19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAREASTCON.2018.8602807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAREASTCON.2018.8602807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modification of Nonparametric Probability Density Estimation of Parzen's Type with Implicitly Given form of Kernel Function
The new nonparametric probability density estimation based on use of the smoothing operator is offered and investigated. It has smaller dispersion in comparison with probability density estimation like Rosenblatt-Parzen.