基于蚁群优化的智能电网能量管理控制器

Sahar Rahim, Z. Iqbal, Nusrat Shaheen, Z. Khan, U. Qasim, S. A. Khan, N. Javaid
{"title":"基于蚁群优化的智能电网能量管理控制器","authors":"Sahar Rahim, Z. Iqbal, Nusrat Shaheen, Z. Khan, U. Qasim, S. A. Khan, N. Javaid","doi":"10.1109/AINA.2016.163","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a generic architecture for demand side management (DSM) and use combined model of time of use tariff and inclined block rates. The problem formulation is carried via multiple knapsack and its solution is obtained via ant colony optimization (ACO). Simulation results show that the designed model for energy management achieves our objectives, it is proven as a cost-effective solution to increase sustainability of smart grid. The ACO based energy management controller performs more efficiently than energy management controller without ACO based scheduling in terms of electricity bill reduction, peak to average ratio minimization and user comfort level maximization.","PeriodicalId":438655,"journal":{"name":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","volume":"29 6 Suppl 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Ant Colony Optimization Based Energy Management Controller for Smart Grid\",\"authors\":\"Sahar Rahim, Z. Iqbal, Nusrat Shaheen, Z. Khan, U. Qasim, S. A. Khan, N. Javaid\",\"doi\":\"10.1109/AINA.2016.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a generic architecture for demand side management (DSM) and use combined model of time of use tariff and inclined block rates. The problem formulation is carried via multiple knapsack and its solution is obtained via ant colony optimization (ACO). Simulation results show that the designed model for energy management achieves our objectives, it is proven as a cost-effective solution to increase sustainability of smart grid. The ACO based energy management controller performs more efficiently than energy management controller without ACO based scheduling in terms of electricity bill reduction, peak to average ratio minimization and user comfort level maximization.\",\"PeriodicalId\":438655,\"journal\":{\"name\":\"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)\",\"volume\":\"29 6 Suppl 19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINA.2016.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2016.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文介绍了一种通用的需求侧管理体系结构,并采用了分时电价和倾斜分段电价的组合模型。该问题通过多个背包进行表述,并通过蚁群算法求解。仿真结果表明,所设计的能量管理模型达到了预期目标,是提高智能电网可持续性的一种经济有效的解决方案。基于蚁群算法的能源管理控制器在电费减少、峰均比最小化和用户舒适度最大化方面比不基于蚁群算法的能源管理控制器更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ant Colony Optimization Based Energy Management Controller for Smart Grid
In this paper, we introduce a generic architecture for demand side management (DSM) and use combined model of time of use tariff and inclined block rates. The problem formulation is carried via multiple knapsack and its solution is obtained via ant colony optimization (ACO). Simulation results show that the designed model for energy management achieves our objectives, it is proven as a cost-effective solution to increase sustainability of smart grid. The ACO based energy management controller performs more efficiently than energy management controller without ACO based scheduling in terms of electricity bill reduction, peak to average ratio minimization and user comfort level maximization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信