为工业通信协议生成强化学习环境

A. Csiszar, Viktor Krimstein, J. Bogner, A. Verl
{"title":"为工业通信协议生成强化学习环境","authors":"A. Csiszar, Viktor Krimstein, J. Bogner, A. Verl","doi":"10.1109/AI4I51902.2021.00022","DOIUrl":null,"url":null,"abstract":"An important part of any reinforcement learning application is interfacing the agent to its environment. To enable an easier use of reinforcement learning agents in manufacturing and automation-related real-world environments, we propose an environment generator which acts as an adapter between the interface of the agent and existing industrial communication protocols. This paper describes the functionality and architecture of such an environment generator.","PeriodicalId":114373,"journal":{"name":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generating Reinforcement Learning Environments for Industrial Communication Protocols\",\"authors\":\"A. Csiszar, Viktor Krimstein, J. Bogner, A. Verl\",\"doi\":\"10.1109/AI4I51902.2021.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important part of any reinforcement learning application is interfacing the agent to its environment. To enable an easier use of reinforcement learning agents in manufacturing and automation-related real-world environments, we propose an environment generator which acts as an adapter between the interface of the agent and existing industrial communication protocols. This paper describes the functionality and architecture of such an environment generator.\",\"PeriodicalId\":114373,\"journal\":{\"name\":\"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I51902.2021.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I51902.2021.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

任何强化学习应用的一个重要部分是将智能体与其环境连接起来。为了在制造和自动化相关的现实环境中更容易地使用强化学习代理,我们提出了一个环境生成器,它作为代理接口和现有工业通信协议之间的适配器。本文描述了这种环境生成器的功能和体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Reinforcement Learning Environments for Industrial Communication Protocols
An important part of any reinforcement learning application is interfacing the agent to its environment. To enable an easier use of reinforcement learning agents in manufacturing and automation-related real-world environments, we propose an environment generator which acts as an adapter between the interface of the agent and existing industrial communication protocols. This paper describes the functionality and architecture of such an environment generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信