自重力系统的热力学诱导几何

Lev Bi, Zagorodny Ag
{"title":"自重力系统的热力学诱导几何","authors":"Lev Bi, Zagorodny Ag","doi":"10.17352/amp.000052","DOIUrl":null,"url":null,"abstract":"A new approach based on the nonequilibrium statistical operator is presented that makes it possible to take into account the inhomogeneous particle distribution and provides obtaining all thermodynamic relations of self-gravitating systems. The equations corresponding to the extremum of the partition function completely reproduce the well-known equations of the general theory of relativity. Guided by the principle of Mach's \"economing of thinking\" quantitatively and qualitatively, is shown that the classical statistical description and the associated thermodynamic relations reproduce Einstein's gravitational equation. The article answers the question of how is it possible to substantiate the general relativistic equations in terms of the statistical methods for the description of the behavior of the system in the classical case.","PeriodicalId":430514,"journal":{"name":"Annals of Mathematics and Physics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic-induced geometry of self-gravitating systems\",\"authors\":\"Lev Bi, Zagorodny Ag\",\"doi\":\"10.17352/amp.000052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach based on the nonequilibrium statistical operator is presented that makes it possible to take into account the inhomogeneous particle distribution and provides obtaining all thermodynamic relations of self-gravitating systems. The equations corresponding to the extremum of the partition function completely reproduce the well-known equations of the general theory of relativity. Guided by the principle of Mach's \\\"economing of thinking\\\" quantitatively and qualitatively, is shown that the classical statistical description and the associated thermodynamic relations reproduce Einstein's gravitational equation. The article answers the question of how is it possible to substantiate the general relativistic equations in terms of the statistical methods for the description of the behavior of the system in the classical case.\",\"PeriodicalId\":430514,\"journal\":{\"name\":\"Annals of Mathematics and Physics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17352/amp.000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17352/amp.000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于非平衡统计算符的新方法,可以考虑非均匀粒子分布,并提供了获得自引力系统的所有热力学关系的方法。配分函数极值对应的方程完全再现了著名的广义相对论方程。在马赫“节约思维”原理的定量和定性指导下,证明了经典的统计描述和相关的热力学关系再现了爱因斯坦的引力方程。本文回答了在经典情况下如何用描述系统行为的统计方法来证实广义相对论方程的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic-induced geometry of self-gravitating systems
A new approach based on the nonequilibrium statistical operator is presented that makes it possible to take into account the inhomogeneous particle distribution and provides obtaining all thermodynamic relations of self-gravitating systems. The equations corresponding to the extremum of the partition function completely reproduce the well-known equations of the general theory of relativity. Guided by the principle of Mach's "economing of thinking" quantitatively and qualitatively, is shown that the classical statistical description and the associated thermodynamic relations reproduce Einstein's gravitational equation. The article answers the question of how is it possible to substantiate the general relativistic equations in terms of the statistical methods for the description of the behavior of the system in the classical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信