Alexander S. Behr, Elnaz Abbaspour, Katrin Rosenthal, Jürgen Pleiss, Norbert Kockmann
{"title":"基于本体的酶meml实验室数据采集用于生物催化反应器过程模拟","authors":"Alexander S. Behr, Elnaz Abbaspour, Katrin Rosenthal, Jürgen Pleiss, Norbert Kockmann","doi":"10.52825/cordi.v1i.324","DOIUrl":null,"url":null,"abstract":"The presented work explores the use of ontologies and standardized enzymatic data to set up enzymatic reactions in process simulators, such as DWSIM. Setting up an automated workflow to start a process simulation based on enzymatic data obtained from the laboratory can help save costs and time during the development phase. Standardized conditions are crucial for accurate comparison and analysis of enzymatic data, where ontologies provide a standardized vocabulary and semantic relations between relevant concepts. To ensure standardized data, an electronic lab notebook (ELN) is used based on EnzymeML, an open standard XML-based format for enzyme kinetics data. Furthermore, two ontologies are merged and the result is extended for the use in the Python-based workflow. The resulting data is stored in a knowledge graph for research data in a machine-accessible and human-readable format. Thus, the study demonstrates a workflow that allows for the direct translation of ELN data into a process simulation via ontologies.","PeriodicalId":359879,"journal":{"name":"Proceedings of the Conference on Research Data Infrastructure","volume":"375 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology-Based Laboratory Data Acquisition With EnzymeML for Process Simulation of Biocatalytic Reactors\",\"authors\":\"Alexander S. Behr, Elnaz Abbaspour, Katrin Rosenthal, Jürgen Pleiss, Norbert Kockmann\",\"doi\":\"10.52825/cordi.v1i.324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presented work explores the use of ontologies and standardized enzymatic data to set up enzymatic reactions in process simulators, such as DWSIM. Setting up an automated workflow to start a process simulation based on enzymatic data obtained from the laboratory can help save costs and time during the development phase. Standardized conditions are crucial for accurate comparison and analysis of enzymatic data, where ontologies provide a standardized vocabulary and semantic relations between relevant concepts. To ensure standardized data, an electronic lab notebook (ELN) is used based on EnzymeML, an open standard XML-based format for enzyme kinetics data. Furthermore, two ontologies are merged and the result is extended for the use in the Python-based workflow. The resulting data is stored in a knowledge graph for research data in a machine-accessible and human-readable format. Thus, the study demonstrates a workflow that allows for the direct translation of ELN data into a process simulation via ontologies.\",\"PeriodicalId\":359879,\"journal\":{\"name\":\"Proceedings of the Conference on Research Data Infrastructure\",\"volume\":\"375 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on Research Data Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/cordi.v1i.324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Research Data Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/cordi.v1i.324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ontology-Based Laboratory Data Acquisition With EnzymeML for Process Simulation of Biocatalytic Reactors
The presented work explores the use of ontologies and standardized enzymatic data to set up enzymatic reactions in process simulators, such as DWSIM. Setting up an automated workflow to start a process simulation based on enzymatic data obtained from the laboratory can help save costs and time during the development phase. Standardized conditions are crucial for accurate comparison and analysis of enzymatic data, where ontologies provide a standardized vocabulary and semantic relations between relevant concepts. To ensure standardized data, an electronic lab notebook (ELN) is used based on EnzymeML, an open standard XML-based format for enzyme kinetics data. Furthermore, two ontologies are merged and the result is extended for the use in the Python-based workflow. The resulting data is stored in a knowledge graph for research data in a machine-accessible and human-readable format. Thus, the study demonstrates a workflow that allows for the direct translation of ELN data into a process simulation via ontologies.