{"title":"K_12s的指数多非同构可定向三角形嵌入的简单构造","authors":"V. P. Korzhik","doi":"10.26493/2590-9770.1387.A84","DOIUrl":null,"url":null,"abstract":"Using an index one current graph with the cyclic current group we give a simple construction of 22s − 7 nonisomorphic orientable triangular embeddings of the complete graph K12s, s ≥ 4. These embeddings have no nontrivial automorphisms.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A simple construction of exponentially many nonisomorphic orientable triangular embeddings of K_12s\",\"authors\":\"V. P. Korzhik\",\"doi\":\"10.26493/2590-9770.1387.A84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using an index one current graph with the cyclic current group we give a simple construction of 22s − 7 nonisomorphic orientable triangular embeddings of the complete graph K12s, s ≥ 4. These embeddings have no nontrivial automorphisms.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1387.A84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1387.A84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple construction of exponentially many nonisomorphic orientable triangular embeddings of K_12s
Using an index one current graph with the cyclic current group we give a simple construction of 22s − 7 nonisomorphic orientable triangular embeddings of the complete graph K12s, s ≥ 4. These embeddings have no nontrivial automorphisms.