多相机网络中判别姿态的早期识别

Scott Spurlock, Junjie Shan, Richard Souvenir
{"title":"多相机网络中判别姿态的早期识别","authors":"Scott Spurlock, Junjie Shan, Richard Souvenir","doi":"10.1145/2789116.2789117","DOIUrl":null,"url":null,"abstract":"We present a framework for early action recognition in a multi-camera network. Our approach balances recognition accuracy with speed by dynamically selecting the best camera for classification. We follow an iterative clustering approach to learn sets of keyposes that are discriminative for recognition as well as for predicting the best camera for classification of future frames. Experiments on multi-camera datasets demonstrate the applicability of our view-shifting framework to the problem of early recognition.","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discriminative poses for early recognition in multi-camera networks\",\"authors\":\"Scott Spurlock, Junjie Shan, Richard Souvenir\",\"doi\":\"10.1145/2789116.2789117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for early action recognition in a multi-camera network. Our approach balances recognition accuracy with speed by dynamically selecting the best camera for classification. We follow an iterative clustering approach to learn sets of keyposes that are discriminative for recognition as well as for predicting the best camera for classification of future frames. Experiments on multi-camera datasets demonstrate the applicability of our view-shifting framework to the problem of early recognition.\",\"PeriodicalId\":113163,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2789116.2789117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2789117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个多摄像机网络中的早期动作识别框架。我们的方法通过动态选择最佳相机进行分类来平衡识别精度和速度。我们采用迭代聚类方法来学习一组关键姿势,这些关键姿势对识别和预测未来帧分类的最佳相机具有鉴别性。在多相机数据集上的实验证明了我们的视点移位框架在早期识别问题上的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative poses for early recognition in multi-camera networks
We present a framework for early action recognition in a multi-camera network. Our approach balances recognition accuracy with speed by dynamically selecting the best camera for classification. We follow an iterative clustering approach to learn sets of keyposes that are discriminative for recognition as well as for predicting the best camera for classification of future frames. Experiments on multi-camera datasets demonstrate the applicability of our view-shifting framework to the problem of early recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信