基于PCA子空间无参考图像质量指标优化的单幅图像超分辨率

Brian Sumali, H. Sarkan, N. Hamada, Y. Mitsukura
{"title":"基于PCA子空间无参考图像质量指标优化的单幅图像超分辨率","authors":"Brian Sumali, H. Sarkan, N. Hamada, Y. Mitsukura","doi":"10.1109/CSPA.2016.7515828","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) has been effectively applied for solving atmospheric-turbulence degraded images. PCA-based approaches improve the image quality by adding high-frequency components extracted using PCA to the blurred image. The PCA-based restoration process is similar with conventional single-frame Super-Resolution (SR) methods, which perform SR process by improving the edges portion of low-resolution images. This paper aims to introduce PCA-based restoration to solve SR problem with additive white Gaussian noise. We conducted experiments using standard image database and show comparative result with the latest deep-learning SR approach.","PeriodicalId":314829,"journal":{"name":"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single image Super Resolution by no-reference image quality index optimization in PCA subspace\",\"authors\":\"Brian Sumali, H. Sarkan, N. Hamada, Y. Mitsukura\",\"doi\":\"10.1109/CSPA.2016.7515828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal Component Analysis (PCA) has been effectively applied for solving atmospheric-turbulence degraded images. PCA-based approaches improve the image quality by adding high-frequency components extracted using PCA to the blurred image. The PCA-based restoration process is similar with conventional single-frame Super-Resolution (SR) methods, which perform SR process by improving the edges portion of low-resolution images. This paper aims to introduce PCA-based restoration to solve SR problem with additive white Gaussian noise. We conducted experiments using standard image database and show comparative result with the latest deep-learning SR approach.\",\"PeriodicalId\":314829,\"journal\":{\"name\":\"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2016.7515828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2016.7515828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

主成分分析(PCA)已被有效地应用于大气湍流退化图像的求解。基于PCA的方法通过将PCA提取的高频分量添加到模糊图像中来提高图像质量。基于pca的恢复过程与传统的单帧超分辨率(SR)方法相似,通过改善低分辨率图像的边缘部分来进行SR处理。本文旨在引入基于pca的复原方法来解决加性高斯白噪声的SR问题。我们使用标准图像数据库进行了实验,并与最新的深度学习SR方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single image Super Resolution by no-reference image quality index optimization in PCA subspace
Principal Component Analysis (PCA) has been effectively applied for solving atmospheric-turbulence degraded images. PCA-based approaches improve the image quality by adding high-frequency components extracted using PCA to the blurred image. The PCA-based restoration process is similar with conventional single-frame Super-Resolution (SR) methods, which perform SR process by improving the edges portion of low-resolution images. This paper aims to introduce PCA-based restoration to solve SR problem with additive white Gaussian noise. We conducted experiments using standard image database and show comparative result with the latest deep-learning SR approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信