基于Shannon、rassanyi和Tsallis熵的入侵容忍系统决策树

C. F. L. Lima, F. M. Assis, C. P. Souza
{"title":"基于Shannon、rassanyi和Tsallis熵的入侵容忍系统决策树","authors":"C. F. L. Lima, F. M. Assis, C. P. Souza","doi":"10.1109/ICIMP.2010.23","DOIUrl":null,"url":null,"abstract":"This paper describes a comparative study of the use of Shannon, Renyi and Tsallis entropies for designing Decision Tree, with goal to find more efficient alternatives applied to Intrusion Tolerant Systems. Decision Tree has been used in classification model problems related to intrusion detection in networks, presenting good results. A very used decision tree is the C4.5 one that applies the Shannon entropy in order to choose the attributes that better divide data intoclasses. However, other ways to measure entropy, e.g., Tsallis and Renyi entropy, may be applied aiming at guaranteeing better generalization related to split criteria. Experimental results demonstrate that Tsallis and Renyi entropy can be used to construct more compact and efficient decision trees compared with Shannon entropy and these models can to provide more accurate intrusion tolerante systems.","PeriodicalId":314947,"journal":{"name":"2010 Fifth International Conference on Internet Monitoring and Protection","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Decision Tree Based on Shannon, Rényi and Tsallis Entropies for Intrusion Tolerant Systems\",\"authors\":\"C. F. L. Lima, F. M. Assis, C. P. Souza\",\"doi\":\"10.1109/ICIMP.2010.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a comparative study of the use of Shannon, Renyi and Tsallis entropies for designing Decision Tree, with goal to find more efficient alternatives applied to Intrusion Tolerant Systems. Decision Tree has been used in classification model problems related to intrusion detection in networks, presenting good results. A very used decision tree is the C4.5 one that applies the Shannon entropy in order to choose the attributes that better divide data intoclasses. However, other ways to measure entropy, e.g., Tsallis and Renyi entropy, may be applied aiming at guaranteeing better generalization related to split criteria. Experimental results demonstrate that Tsallis and Renyi entropy can be used to construct more compact and efficient decision trees compared with Shannon entropy and these models can to provide more accurate intrusion tolerante systems.\",\"PeriodicalId\":314947,\"journal\":{\"name\":\"2010 Fifth International Conference on Internet Monitoring and Protection\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fifth International Conference on Internet Monitoring and Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMP.2010.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth International Conference on Internet Monitoring and Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMP.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文对Shannon熵、Renyi熵和Tsallis熵在决策树设计中的应用进行了比较研究,目的是寻找更有效的决策树设计方案,应用于入侵容忍系统。将决策树方法应用于网络中入侵检测的分类模型问题,取得了良好的效果。一个非常常用的决策树是C4.5决策树,它应用香农熵来选择更好地将数据划分为类的属性。然而,其他度量熵的方法,例如,Tsallis和Renyi熵,可以应用于保证与分裂标准相关的更好的泛化。实验结果表明,与Shannon熵相比,Tsallis熵和Renyi熵可以构建更紧凑、更高效的决策树,并且可以提供更精确的入侵容忍系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision Tree Based on Shannon, Rényi and Tsallis Entropies for Intrusion Tolerant Systems
This paper describes a comparative study of the use of Shannon, Renyi and Tsallis entropies for designing Decision Tree, with goal to find more efficient alternatives applied to Intrusion Tolerant Systems. Decision Tree has been used in classification model problems related to intrusion detection in networks, presenting good results. A very used decision tree is the C4.5 one that applies the Shannon entropy in order to choose the attributes that better divide data intoclasses. However, other ways to measure entropy, e.g., Tsallis and Renyi entropy, may be applied aiming at guaranteeing better generalization related to split criteria. Experimental results demonstrate that Tsallis and Renyi entropy can be used to construct more compact and efficient decision trees compared with Shannon entropy and these models can to provide more accurate intrusion tolerante systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信