{"title":"从低到超分辨率和更高","authors":"C. Kok, Wing-Shan Tam","doi":"10.1109/VCIP49819.2020.9301878","DOIUrl":null,"url":null,"abstract":"The tutorial starts with an introduction of digital image interpolation, and single image super-resolution. It continues with the definition of various image interpolation performance measurement indices, including both objective and subjective indices. The core of this tutorial is the application of covariance based interpolation to achieve high visual quality image interpolation and single image super-resolution results. Layer on layer, the covariance based edge-directed image interpolation techniques that makes use of stochastic image model without explicit edge map, to iterative covariance correction based image interpolation. The edge based interpolation incorporated human visual system to achieve visually pleasant high resolution interpolation results. On each layer, the pros and cons of each image model and interpolation technique, solutions to alleviate the interpolation visual artifacts of each techniques, and innovative modification to overcome limitations of traditional edge-directed image interpolation techniques are presented in this tutorial, which includes: spatial adaptive pixel intensity estimation, pixel intensity correction, error propagation mitigation, covariance windows adaptation, and iterative covariance correction. The tutorial will extend from theoretical and analytical discussions to detail implementation using MATLAB. The audience shall be able to bring home with implementation details, as well as the performance and complexity of the interpolation algorithms discussed in this tutorial.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Low to Super Resolution and Beyond\",\"authors\":\"C. Kok, Wing-Shan Tam\",\"doi\":\"10.1109/VCIP49819.2020.9301878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tutorial starts with an introduction of digital image interpolation, and single image super-resolution. It continues with the definition of various image interpolation performance measurement indices, including both objective and subjective indices. The core of this tutorial is the application of covariance based interpolation to achieve high visual quality image interpolation and single image super-resolution results. Layer on layer, the covariance based edge-directed image interpolation techniques that makes use of stochastic image model without explicit edge map, to iterative covariance correction based image interpolation. The edge based interpolation incorporated human visual system to achieve visually pleasant high resolution interpolation results. On each layer, the pros and cons of each image model and interpolation technique, solutions to alleviate the interpolation visual artifacts of each techniques, and innovative modification to overcome limitations of traditional edge-directed image interpolation techniques are presented in this tutorial, which includes: spatial adaptive pixel intensity estimation, pixel intensity correction, error propagation mitigation, covariance windows adaptation, and iterative covariance correction. The tutorial will extend from theoretical and analytical discussions to detail implementation using MATLAB. The audience shall be able to bring home with implementation details, as well as the performance and complexity of the interpolation algorithms discussed in this tutorial.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The tutorial starts with an introduction of digital image interpolation, and single image super-resolution. It continues with the definition of various image interpolation performance measurement indices, including both objective and subjective indices. The core of this tutorial is the application of covariance based interpolation to achieve high visual quality image interpolation and single image super-resolution results. Layer on layer, the covariance based edge-directed image interpolation techniques that makes use of stochastic image model without explicit edge map, to iterative covariance correction based image interpolation. The edge based interpolation incorporated human visual system to achieve visually pleasant high resolution interpolation results. On each layer, the pros and cons of each image model and interpolation technique, solutions to alleviate the interpolation visual artifacts of each techniques, and innovative modification to overcome limitations of traditional edge-directed image interpolation techniques are presented in this tutorial, which includes: spatial adaptive pixel intensity estimation, pixel intensity correction, error propagation mitigation, covariance windows adaptation, and iterative covariance correction. The tutorial will extend from theoretical and analytical discussions to detail implementation using MATLAB. The audience shall be able to bring home with implementation details, as well as the performance and complexity of the interpolation algorithms discussed in this tutorial.