求解迭代收敛并行机器学习中的离散问题

A. Harlap, Henggang Cui, Wei Dai, Jinliang Wei, G. Ganger, Phillip B. Gibbons, Garth A. Gibson, E. Xing
{"title":"求解迭代收敛并行机器学习中的离散问题","authors":"A. Harlap, Henggang Cui, Wei Dai, Jinliang Wei, G. Ganger, Phillip B. Gibbons, Garth A. Gibson, E. Xing","doi":"10.1145/2987550.2987554","DOIUrl":null,"url":null,"abstract":"FlexRR provides a scalable, efficient solution to the straggler problem for iterative machine learning (ML). The frequent (e.g., per iteration) barriers used in traditional BSP-based distributed ML implementations cause every transient slowdown of any worker thread to delay all others. FlexRR combines a more flexible synchronization model with dynamic peer-to-peer re-assignment of work among workers to address straggler threads. Experiments with real straggler behavior observed on Amazon EC2 and Microsoft Azure, as well as injected straggler behavior stress tests, confirm the significance of the problem and the effectiveness of FlexRR's solution. Using FlexRR, we consistently observe near-ideal run-times (relative to no performance jitter) across all real and injected straggler behaviors tested.","PeriodicalId":362207,"journal":{"name":"Proceedings of the Seventh ACM Symposium on Cloud Computing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Addressing the straggler problem for iterative convergent parallel ML\",\"authors\":\"A. Harlap, Henggang Cui, Wei Dai, Jinliang Wei, G. Ganger, Phillip B. Gibbons, Garth A. Gibson, E. Xing\",\"doi\":\"10.1145/2987550.2987554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FlexRR provides a scalable, efficient solution to the straggler problem for iterative machine learning (ML). The frequent (e.g., per iteration) barriers used in traditional BSP-based distributed ML implementations cause every transient slowdown of any worker thread to delay all others. FlexRR combines a more flexible synchronization model with dynamic peer-to-peer re-assignment of work among workers to address straggler threads. Experiments with real straggler behavior observed on Amazon EC2 and Microsoft Azure, as well as injected straggler behavior stress tests, confirm the significance of the problem and the effectiveness of FlexRR's solution. Using FlexRR, we consistently observe near-ideal run-times (relative to no performance jitter) across all real and injected straggler behaviors tested.\",\"PeriodicalId\":362207,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Symposium on Cloud Computing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2987550.2987554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987550.2987554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

摘要

FlexRR为迭代机器学习(ML)的离散问题提供了一个可扩展的、高效的解决方案。在传统的基于bsp的分布式ML实现中使用的频繁(例如,每次迭代)障碍导致任何工作线程的每次短暂减速都会延迟所有其他线程。FlexRR结合了更灵活的同步模型和动态的点对点的工作重新分配,以解决线程分散的问题。在Amazon EC2和Microsoft Azure上观察到的真实掉队行为实验,以及注入掉队行为压力测试,证实了问题的重要性和FlexRR解决方案的有效性。使用FlexRR,我们在测试的所有真实和注入的离散行为中始终观察到接近理想的运行时间(相对于没有性能抖动)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing the straggler problem for iterative convergent parallel ML
FlexRR provides a scalable, efficient solution to the straggler problem for iterative machine learning (ML). The frequent (e.g., per iteration) barriers used in traditional BSP-based distributed ML implementations cause every transient slowdown of any worker thread to delay all others. FlexRR combines a more flexible synchronization model with dynamic peer-to-peer re-assignment of work among workers to address straggler threads. Experiments with real straggler behavior observed on Amazon EC2 and Microsoft Azure, as well as injected straggler behavior stress tests, confirm the significance of the problem and the effectiveness of FlexRR's solution. Using FlexRR, we consistently observe near-ideal run-times (relative to no performance jitter) across all real and injected straggler behaviors tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信