{"title":"基于深度学习的咖啡叶病害识别与严重程度分类","authors":"E. Lisboa, Givanildo Lima, Fabiane Queiroz","doi":"10.5753/sibgrapi.est.2021.20039","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for automatic identification and classification of leaf diseases and pests in the Brazilian Arabica Coffee leaves. We developed a Machine Learning model, trained with the BRACOL public image dataset, to evaluate if a given image of a leaf has a disease or pest — Miner, Phoma, Cercospora and Rust — or if it is healthy. We then compared our model with other famous and well-known classification models, and we were able to achieve an accuracy of 98,04%, which greatly exceeds the accuracy of the other methods implemented. In addition, we developed an assessment to perform a classification related to the percentage of each leaf that is affected by the disease, achieving an accuracy of approximately 90%.","PeriodicalId":110864,"journal":{"name":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coffee Leaf Diseases Identification and Severity Classification using Deep Learning\",\"authors\":\"E. Lisboa, Givanildo Lima, Fabiane Queiroz\",\"doi\":\"10.5753/sibgrapi.est.2021.20039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for automatic identification and classification of leaf diseases and pests in the Brazilian Arabica Coffee leaves. We developed a Machine Learning model, trained with the BRACOL public image dataset, to evaluate if a given image of a leaf has a disease or pest — Miner, Phoma, Cercospora and Rust — or if it is healthy. We then compared our model with other famous and well-known classification models, and we were able to achieve an accuracy of 98,04%, which greatly exceeds the accuracy of the other methods implemented. In addition, we developed an assessment to perform a classification related to the percentage of each leaf that is affected by the disease, achieving an accuracy of approximately 90%.\",\"PeriodicalId\":110864,\"journal\":{\"name\":\"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sibgrapi.est.2021.20039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2021.20039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coffee Leaf Diseases Identification and Severity Classification using Deep Learning
In this paper, we propose a method for automatic identification and classification of leaf diseases and pests in the Brazilian Arabica Coffee leaves. We developed a Machine Learning model, trained with the BRACOL public image dataset, to evaluate if a given image of a leaf has a disease or pest — Miner, Phoma, Cercospora and Rust — or if it is healthy. We then compared our model with other famous and well-known classification models, and we were able to achieve an accuracy of 98,04%, which greatly exceeds the accuracy of the other methods implemented. In addition, we developed an assessment to perform a classification related to the percentage of each leaf that is affected by the disease, achieving an accuracy of approximately 90%.