基于范围关系的医疗数据频繁时态模式挖掘

S. Hirano, S. Tsumoto
{"title":"基于范围关系的医疗数据频繁时态模式挖掘","authors":"S. Hirano, S. Tsumoto","doi":"10.1109/ICDMW.2017.87","DOIUrl":null,"url":null,"abstract":"This paper presents a temporal pattern mining method for medical data. It modifies the mining algorithms proposed by Batal et al. to incorporate with ranged relations. Experimental results demonstrate that the proposed method could generate frequent patterns with abstracted time ranges embedded in their temporal relations.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequent Temporal Pattern Mining for Medical Data Based on Ranged Relations\",\"authors\":\"S. Hirano, S. Tsumoto\",\"doi\":\"10.1109/ICDMW.2017.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a temporal pattern mining method for medical data. It modifies the mining algorithms proposed by Batal et al. to incorporate with ranged relations. Experimental results demonstrate that the proposed method could generate frequent patterns with abstracted time ranges embedded in their temporal relations.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种医学数据的时态模式挖掘方法。它对Batal等人提出的挖掘算法进行了改进,纳入了范围关系。实验结果表明,该方法可以生成具有抽象时间范围的频繁模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequent Temporal Pattern Mining for Medical Data Based on Ranged Relations
This paper presents a temporal pattern mining method for medical data. It modifies the mining algorithms proposed by Batal et al. to incorporate with ranged relations. Experimental results demonstrate that the proposed method could generate frequent patterns with abstracted time ranges embedded in their temporal relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信