T. A. Abbas, N. Dutton, Oscar Almer, S. Pellegrini, Y. Henrion, R. Henderson
{"title":"基于3d堆叠CMOS技术的7.83μm节距背面照明SPAD图像传感器","authors":"T. A. Abbas, N. Dutton, Oscar Almer, S. Pellegrini, Y. Henrion, R. Henderson","doi":"10.1109/IEDM.2016.7838372","DOIUrl":null,"url":null,"abstract":"We present the first 3D-stacked backside illuminated (BSI) single photon avalanche diode (SPAD) image sensor capable of both single photon counting (SPC) intensity, and time resolved imaging. The 128×120 prototype has a pixel pitch of 7.83 μm making it the smallest pixel reported for SPAD image sensors. A low power, high density 40nm bottom tier hosts the quenching front end and processing electronics while an imaging specific 65nm top tier hosts the photo-detectors with a 1-to-1 hybrid bond connection [1]. The SPAD exhibits a median dark count rate (DCR) below 200cps at room temperature and 1V excess bias, and has a peak photon detection probability (PDP) of 27.5% at 640nm and 3 V excess bias.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology\",\"authors\":\"T. A. Abbas, N. Dutton, Oscar Almer, S. Pellegrini, Y. Henrion, R. Henderson\",\"doi\":\"10.1109/IEDM.2016.7838372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first 3D-stacked backside illuminated (BSI) single photon avalanche diode (SPAD) image sensor capable of both single photon counting (SPC) intensity, and time resolved imaging. The 128×120 prototype has a pixel pitch of 7.83 μm making it the smallest pixel reported for SPAD image sensors. A low power, high density 40nm bottom tier hosts the quenching front end and processing electronics while an imaging specific 65nm top tier hosts the photo-detectors with a 1-to-1 hybrid bond connection [1]. The SPAD exhibits a median dark count rate (DCR) below 200cps at room temperature and 1V excess bias, and has a peak photon detection probability (PDP) of 27.5% at 640nm and 3 V excess bias.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backside illuminated SPAD image sensor with 7.83μm pitch in 3D-stacked CMOS technology
We present the first 3D-stacked backside illuminated (BSI) single photon avalanche diode (SPAD) image sensor capable of both single photon counting (SPC) intensity, and time resolved imaging. The 128×120 prototype has a pixel pitch of 7.83 μm making it the smallest pixel reported for SPAD image sensors. A low power, high density 40nm bottom tier hosts the quenching front end and processing electronics while an imaging specific 65nm top tier hosts the photo-detectors with a 1-to-1 hybrid bond connection [1]. The SPAD exhibits a median dark count rate (DCR) below 200cps at room temperature and 1V excess bias, and has a peak photon detection probability (PDP) of 27.5% at 640nm and 3 V excess bias.