从错误数据中公理化εL⊥可表达的术语知识

D. Borchmann
{"title":"从错误数据中公理化εL⊥可表达的术语知识","authors":"D. Borchmann","doi":"10.1145/2479832.2479835","DOIUrl":null,"url":null,"abstract":"In a recent approach, Baader and Distel proposed an algorithm to axiomatize all terminological knowledge that is valid in a given data set and is expressible in the description logic ELK. This approach is based on the mathematical theory of formal concept analysis. However, this algorithm requires the initial data set to be free of errors, an assumption that normally cannot be made for real-world data. In this work, we propose a first extension of the work of Baader and Distel to handle errors in the data set. The approach we present here is based on the notion of confidence, as it has been developed and used in the area of data mining.","PeriodicalId":388497,"journal":{"name":"Proceedings of the seventh international conference on Knowledge capture","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Axiomatizing εL⊥-expressible terminological knowledge from erroneous data\",\"authors\":\"D. Borchmann\",\"doi\":\"10.1145/2479832.2479835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent approach, Baader and Distel proposed an algorithm to axiomatize all terminological knowledge that is valid in a given data set and is expressible in the description logic ELK. This approach is based on the mathematical theory of formal concept analysis. However, this algorithm requires the initial data set to be free of errors, an assumption that normally cannot be made for real-world data. In this work, we propose a first extension of the work of Baader and Distel to handle errors in the data set. The approach we present here is based on the notion of confidence, as it has been developed and used in the area of data mining.\",\"PeriodicalId\":388497,\"journal\":{\"name\":\"Proceedings of the seventh international conference on Knowledge capture\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the seventh international conference on Knowledge capture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2479832.2479835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the seventh international conference on Knowledge capture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2479832.2479835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在最近的一种方法中,Baader和Distel提出了一种算法来公化所有在给定数据集中有效且在描述逻辑ELK中可表达的术语知识。这种方法是基于形式概念分析的数学理论。然而,该算法要求初始数据集不存在错误,这一假设通常不能用于实际数据。在这项工作中,我们提出了Baader和Distel的工作的第一个扩展,以处理数据集中的错误。我们在这里提出的方法是基于置信度的概念,因为它已经在数据挖掘领域得到了发展和使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axiomatizing εL⊥-expressible terminological knowledge from erroneous data
In a recent approach, Baader and Distel proposed an algorithm to axiomatize all terminological knowledge that is valid in a given data set and is expressible in the description logic ELK. This approach is based on the mathematical theory of formal concept analysis. However, this algorithm requires the initial data set to be free of errors, an assumption that normally cannot be made for real-world data. In this work, we propose a first extension of the work of Baader and Distel to handle errors in the data set. The approach we present here is based on the notion of confidence, as it has been developed and used in the area of data mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信