一个完整的算法来诊断和减轻物理层攻击的影响

Sasa Maric, Audri Biswas, S. Reisenfeld
{"title":"一个完整的算法来诊断和减轻物理层攻击的影响","authors":"Sasa Maric, Audri Biswas, S. Reisenfeld","doi":"10.1109/ICSIGSYS.2017.7967058","DOIUrl":null,"url":null,"abstract":"In this paper we present a method to diagnose and mitigate against primary user emulation attacks (PUEA) in cognitive radio networks. We develop a hybrid algorithm that uses a combination of compressed sensing and belief propagation to identify and combat PUEAs. We propose to use compressive sensing at the fusion centre to localise a primary user, then distribute the primary user location to secondary users in order to establish theoretical data for comparison and then use a variant of belief propagation at each secondary user to diagnose primary user emulation attacks. Using a central-distributed hybrid approach ensures that our algorithm is highly adaptive, accurate and simple to implement.","PeriodicalId":212068,"journal":{"name":"2017 International Conference on Signals and Systems (ICSigSys)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A complete algorithm to diagnose and alleviate the effects of physical layer attacks\",\"authors\":\"Sasa Maric, Audri Biswas, S. Reisenfeld\",\"doi\":\"10.1109/ICSIGSYS.2017.7967058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a method to diagnose and mitigate against primary user emulation attacks (PUEA) in cognitive radio networks. We develop a hybrid algorithm that uses a combination of compressed sensing and belief propagation to identify and combat PUEAs. We propose to use compressive sensing at the fusion centre to localise a primary user, then distribute the primary user location to secondary users in order to establish theoretical data for comparison and then use a variant of belief propagation at each secondary user to diagnose primary user emulation attacks. Using a central-distributed hybrid approach ensures that our algorithm is highly adaptive, accurate and simple to implement.\",\"PeriodicalId\":212068,\"journal\":{\"name\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGSYS.2017.7967058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signals and Systems (ICSigSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGSYS.2017.7967058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种认知无线网络中主用户仿真攻击(PUEA)的诊断和缓解方法。我们开发了一种混合算法,结合压缩感知和信念传播来识别和对抗puea。我们建议在融合中心使用压缩感知来定位主用户,然后将主用户位置分发给辅助用户以建立理论数据进行比较,然后在每个辅助用户上使用一种变体的信念传播来诊断主用户仿真攻击。采用中心-分布式混合方法确保我们的算法具有高度自适应、准确和易于实现的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A complete algorithm to diagnose and alleviate the effects of physical layer attacks
In this paper we present a method to diagnose and mitigate against primary user emulation attacks (PUEA) in cognitive radio networks. We develop a hybrid algorithm that uses a combination of compressed sensing and belief propagation to identify and combat PUEAs. We propose to use compressive sensing at the fusion centre to localise a primary user, then distribute the primary user location to secondary users in order to establish theoretical data for comparison and then use a variant of belief propagation at each secondary user to diagnose primary user emulation attacks. Using a central-distributed hybrid approach ensures that our algorithm is highly adaptive, accurate and simple to implement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信