生成-判别混合模型中的偏差-方差权衡

Guillaume Bouchard
{"title":"生成-判别混合模型中的偏差-方差权衡","authors":"Guillaume Bouchard","doi":"10.1109/ICMLA.2007.85","DOIUrl":null,"url":null,"abstract":"Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate, while increasing the estimation variance. An optimal bias-variance balance might be found using hybrid generative-discriminative (HGD) approaches. In these paper, these methods are defined in a unified framework. This allow us to find sufficient conditions under which an improvement in generalization performances is guaranteed. Numerical experiments illustrate the well fondness of our statements.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Bias-variance tradeoff in hybrid generative-discriminative models\",\"authors\":\"Guillaume Bouchard\",\"doi\":\"10.1109/ICMLA.2007.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate, while increasing the estimation variance. An optimal bias-variance balance might be found using hybrid generative-discriminative (HGD) approaches. In these paper, these methods are defined in a unified framework. This allow us to find sufficient conditions under which an improvement in generalization performances is guaranteed. Numerical experiments illustrate the well fondness of our statements.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

给定任何基于不精确密度模型的生成分类器,我们可以定义一个判别对应的分类器,该分类器可以减少其渐近错误率,同时增加估计方差。使用混合生成-判别(HGD)方法可以找到最优的偏差-方差平衡。在本文中,这些方法被定义在一个统一的框架中。这使我们能够找到保证提高泛化性能的充分条件。数值实验证明了我们的观点是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias-variance tradeoff in hybrid generative-discriminative models
Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate, while increasing the estimation variance. An optimal bias-variance balance might be found using hybrid generative-discriminative (HGD) approaches. In these paper, these methods are defined in a unified framework. This allow us to find sufficient conditions under which an improvement in generalization performances is guaranteed. Numerical experiments illustrate the well fondness of our statements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信