用逼近函数实现神经网络

M. Hnatiuc, G. Lamarque
{"title":"用逼近函数实现神经网络","authors":"M. Hnatiuc, G. Lamarque","doi":"10.1109/SCS.2003.1227112","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to stimulate a neural network with non-linear activation functions. The non-linear functions are simulated in Microsoft Visual Studio C++ 6.0 to observe the precision and to implement on the programmable logic devices. This network is realized to accept very small input values. The multiplication between input values and weight values is realized with the add-logarithm and exponential functions. One approximates all the non-linear functions with linear functions using shift-add blocks.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of neural network with approximations functions\",\"authors\":\"M. Hnatiuc, G. Lamarque\",\"doi\":\"10.1109/SCS.2003.1227112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to stimulate a neural network with non-linear activation functions. The non-linear functions are simulated in Microsoft Visual Studio C++ 6.0 to observe the precision and to implement on the programmable logic devices. This network is realized to accept very small input values. The multiplication between input values and weight values is realized with the add-logarithm and exponential functions. One approximates all the non-linear functions with linear functions using shift-add blocks.\",\"PeriodicalId\":375963,\"journal\":{\"name\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCS.2003.1227112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1227112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是用非线性激活函数来刺激神经网络。在Microsoft Visual Studio c++ 6.0中对非线性函数进行仿真,观察其精度并在可编程逻辑器件上实现。该网络可以接受非常小的输入值。输入值与权值之间的乘法是通过加对数和指数函数实现的。一个近似所有的非线性函数与线性函数使用移位加块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of neural network with approximations functions
The purpose of this work is to stimulate a neural network with non-linear activation functions. The non-linear functions are simulated in Microsoft Visual Studio C++ 6.0 to observe the precision and to implement on the programmable logic devices. This network is realized to accept very small input values. The multiplication between input values and weight values is realized with the add-logarithm and exponential functions. One approximates all the non-linear functions with linear functions using shift-add blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信