D. Delling, A. Goldberg, Ilya P. Razenshteyn, Renato F. Werneck
{"title":"使用自然切割的图划分","authors":"D. Delling, A. Goldberg, Ilya P. Razenshteyn, Renato F. Werneck","doi":"10.1109/IPDPS.2011.108","DOIUrl":null,"url":null,"abstract":"We present a novel approach to graph partitioning based on the notion of \\emph{natural cuts}. Our algorithm, called PUNCH, has two phases. The first phase performs a series of minimum-cut computations to identify and contract dense regions of the graph. This reduces the graph size, but preserves its general structure. The second phase uses a combination of greedy and local search heuristics to assemble the final partition. The algorithm performs especially well on road networks, which have an abundance of natural cuts (such as bridges, mountain passes, and ferries). In a few minutes, it obtains the best known partitions for continental-sized networks, significantly improving on previous results.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"Graph Partitioning with Natural Cuts\",\"authors\":\"D. Delling, A. Goldberg, Ilya P. Razenshteyn, Renato F. Werneck\",\"doi\":\"10.1109/IPDPS.2011.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to graph partitioning based on the notion of \\\\emph{natural cuts}. Our algorithm, called PUNCH, has two phases. The first phase performs a series of minimum-cut computations to identify and contract dense regions of the graph. This reduces the graph size, but preserves its general structure. The second phase uses a combination of greedy and local search heuristics to assemble the final partition. The algorithm performs especially well on road networks, which have an abundance of natural cuts (such as bridges, mountain passes, and ferries). In a few minutes, it obtains the best known partitions for continental-sized networks, significantly improving on previous results.\",\"PeriodicalId\":355100,\"journal\":{\"name\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2011.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a novel approach to graph partitioning based on the notion of \emph{natural cuts}. Our algorithm, called PUNCH, has two phases. The first phase performs a series of minimum-cut computations to identify and contract dense regions of the graph. This reduces the graph size, but preserves its general structure. The second phase uses a combination of greedy and local search heuristics to assemble the final partition. The algorithm performs especially well on road networks, which have an abundance of natural cuts (such as bridges, mountain passes, and ferries). In a few minutes, it obtains the best known partitions for continental-sized networks, significantly improving on previous results.