大都会光子采样与可选的用户指导

Shaohua Fan, Stephen Chenney, Yu-Chi Lai
{"title":"大都会光子采样与可选的用户指导","authors":"Shaohua Fan, Stephen Chenney, Yu-Chi Lai","doi":"10.2312/EGWR/EGSR05/127-138","DOIUrl":null,"url":null,"abstract":"We present Metropolis Photon Sampling (MPS), a visual importance-driven algorithm for populating photon maps. Photon Mapping and other particle tracing algorithms fail if the photons are poorly distributed. Our approach samples light transport paths that join a light to the eye, which accounts for the viewer in the sampling process and provides information to improve photon storage. Paths are sampled with a Metropolis-Hastings algorithm that exploits coherence among important light paths. We also present a technique for including user selected paths in the sampling process without introducing bias. This allows a user to provide hints about important paths or reduce variance in specific parts of the image. We demonstrate MPS with a range of scenes and show quantitative improvements in error over standard Photon Mapping and Metropolis Light Transport.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"1 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Metropolis photon sampling with optional user guidance\",\"authors\":\"Shaohua Fan, Stephen Chenney, Yu-Chi Lai\",\"doi\":\"10.2312/EGWR/EGSR05/127-138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Metropolis Photon Sampling (MPS), a visual importance-driven algorithm for populating photon maps. Photon Mapping and other particle tracing algorithms fail if the photons are poorly distributed. Our approach samples light transport paths that join a light to the eye, which accounts for the viewer in the sampling process and provides information to improve photon storage. Paths are sampled with a Metropolis-Hastings algorithm that exploits coherence among important light paths. We also present a technique for including user selected paths in the sampling process without introducing bias. This allows a user to provide hints about important paths or reduce variance in specific parts of the image. We demonstrate MPS with a range of scenes and show quantitative improvements in error over standard Photon Mapping and Metropolis Light Transport.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"1 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/EGWR/EGSR05/127-138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGWR/EGSR05/127-138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们提出了大都市光子采样(MPS),一种用于填充光子地图的视觉重要性驱动算法。如果光子分布不好,光子映射和其他粒子跟踪算法就会失败。我们的方法对连接光到眼睛的光传输路径进行采样,这在采样过程中考虑了观看者,并提供了改善光子存储的信息。路径用Metropolis-Hastings算法采样,该算法利用重要光路之间的相干性。我们还提出了一种在采样过程中包含用户选择路径而不引入偏差的技术。这允许用户提供关于重要路径的提示或减少图像特定部分的差异。我们用一系列场景演示MPS,并展示了比标准光子映射和大都市光传输在误差上的定量改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metropolis photon sampling with optional user guidance
We present Metropolis Photon Sampling (MPS), a visual importance-driven algorithm for populating photon maps. Photon Mapping and other particle tracing algorithms fail if the photons are poorly distributed. Our approach samples light transport paths that join a light to the eye, which accounts for the viewer in the sampling process and provides information to improve photon storage. Paths are sampled with a Metropolis-Hastings algorithm that exploits coherence among important light paths. We also present a technique for including user selected paths in the sampling process without introducing bias. This allows a user to provide hints about important paths or reduce variance in specific parts of the image. We demonstrate MPS with a range of scenes and show quantitative improvements in error over standard Photon Mapping and Metropolis Light Transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信