强化学习的自适应模糊控制

H. Berenji, P. Khedkar
{"title":"强化学习的自适应模糊控制","authors":"H. Berenji, P. Khedkar","doi":"10.23919/ACC.1993.4793196","DOIUrl":null,"url":null,"abstract":"Non-adaptive fuzzy logic controllers can become adaptive by learning from experience in the framework of reinforcement learning. In this paper, we discuss fuzzy reinforcement learning as a hybrid approach which provides a unified framework for including two types of prior knowledge: knowledge for control action selection and knowledge for performance evaluation. We describe GARIC, an architecture for combining fuzzy logic control and reinforcement learning, and apply it to cart-pole balancing and the Space Shuttle attitude control.","PeriodicalId":162700,"journal":{"name":"1993 American Control Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive Fuzzy Control with Reinforcement Learning\",\"authors\":\"H. Berenji, P. Khedkar\",\"doi\":\"10.23919/ACC.1993.4793196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-adaptive fuzzy logic controllers can become adaptive by learning from experience in the framework of reinforcement learning. In this paper, we discuss fuzzy reinforcement learning as a hybrid approach which provides a unified framework for including two types of prior knowledge: knowledge for control action selection and knowledge for performance evaluation. We describe GARIC, an architecture for combining fuzzy logic control and reinforcement learning, and apply it to cart-pole balancing and the Space Shuttle attitude control.\",\"PeriodicalId\":162700,\"journal\":{\"name\":\"1993 American Control Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1993.4793196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1993.4793196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在强化学习的框架下,非自适应模糊逻辑控制器可以通过从经验中学习来实现自适应。在本文中,我们讨论模糊强化学习作为一种混合方法,它提供了一个统一的框架,包括两种类型的先验知识:控制行为选择知识和性能评估知识。本文描述了模糊逻辑控制与强化学习相结合的GARIC体系结构,并将其应用于小车杆平衡和航天飞机姿态控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Fuzzy Control with Reinforcement Learning
Non-adaptive fuzzy logic controllers can become adaptive by learning from experience in the framework of reinforcement learning. In this paper, we discuss fuzzy reinforcement learning as a hybrid approach which provides a unified framework for including two types of prior knowledge: knowledge for control action selection and knowledge for performance evaluation. We describe GARIC, an architecture for combining fuzzy logic control and reinforcement learning, and apply it to cart-pole balancing and the Space Shuttle attitude control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信