基于贝叶斯网络的任务驱动三维目标识别系统

Björn Krebs, B. Korn, M. Burkhardt
{"title":"基于贝叶斯网络的任务驱动三维目标识别系统","authors":"Björn Krebs, B. Korn, M. Burkhardt","doi":"10.1109/ICCV.1998.710767","DOIUrl":null,"url":null,"abstract":"In this paper we propose a general framework to build a task oriented 3D object recognition system for CAD based vision (CBV). Features from 3D space curves representing the object's rims provide sufficient information to allow identification and pose estimation of industrial CAD models. However, features relying on differential surface properties tend to be very vulnerable with respect to noise. To model the statistical behavior of the data we introduce Bayesian nets which model the relationship between objects and observable features. Furthermore, task oriented selection of the optimal action to reduce the uncertainty of recognition results is incorporated into the Bayesian nets. This enables the integration of intelligent recognition strategies depending on the already acquired evidence into a robust, and efficient, 3D CAD based recognition system.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A task driven 3D object recognition system using Bayesian networks\",\"authors\":\"Björn Krebs, B. Korn, M. Burkhardt\",\"doi\":\"10.1109/ICCV.1998.710767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a general framework to build a task oriented 3D object recognition system for CAD based vision (CBV). Features from 3D space curves representing the object's rims provide sufficient information to allow identification and pose estimation of industrial CAD models. However, features relying on differential surface properties tend to be very vulnerable with respect to noise. To model the statistical behavior of the data we introduce Bayesian nets which model the relationship between objects and observable features. Furthermore, task oriented selection of the optimal action to reduce the uncertainty of recognition results is incorporated into the Bayesian nets. This enables the integration of intelligent recognition strategies depending on the already acquired evidence into a robust, and efficient, 3D CAD based recognition system.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一个基于CAD视觉(CBV)的面向任务的三维物体识别系统的总体框架。来自代表物体边缘的三维空间曲线的特征提供了足够的信息,以允许工业CAD模型的识别和姿态估计。然而,依赖于不同表面特性的特征往往非常容易受到噪声的影响。为了对数据的统计行为进行建模,我们引入了贝叶斯网络,该网络对对象和可观察特征之间的关系进行建模。此外,在贝叶斯网络中引入了以任务为导向的最优行为选择,以减少识别结果的不确定性。这使得基于已经获得的证据的智能识别策略集成到一个强大、高效的基于3D CAD的识别系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A task driven 3D object recognition system using Bayesian networks
In this paper we propose a general framework to build a task oriented 3D object recognition system for CAD based vision (CBV). Features from 3D space curves representing the object's rims provide sufficient information to allow identification and pose estimation of industrial CAD models. However, features relying on differential surface properties tend to be very vulnerable with respect to noise. To model the statistical behavior of the data we introduce Bayesian nets which model the relationship between objects and observable features. Furthermore, task oriented selection of the optimal action to reduce the uncertainty of recognition results is incorporated into the Bayesian nets. This enables the integration of intelligent recognition strategies depending on the already acquired evidence into a robust, and efficient, 3D CAD based recognition system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信