多语义跨模态联合嵌入

Zhongwei Xie, Ling Liu, Yanzhao Wu, Lin Li, Luo Zhong
{"title":"多语义跨模态联合嵌入","authors":"Zhongwei Xie, Ling Liu, Yanzhao Wu, Lin Li, Luo Zhong","doi":"10.1109/CogMI50398.2020.00028","DOIUrl":null,"url":null,"abstract":"Textual-visual cross-modal retrieval has been an active research area in both computer vision and natural language processing communities. Most existing works learn a joint embedding model that maps raw text-image pairs onto a joint latent representation space in which the similarity between textual embeddings and visual embeddings can be computed and compared, without leveraging diverse semantics. This paper presents a general framework to study and evaluate the impact of diverse semantics extracted from the multi-modal input data on the quality and performance of joint embedding learning. We identify different ways that conventional textual features, such as TFIDF term frequency semantics and image category semantics, can be combined with neural features to further boost the efficiency of joint embedding learning. Experiments on the benchmark dataset Recipe1M demonstrates that existing representative cross-modal joint embedding approaches enhanced with diverse semantics in both raw inputs and joint embedding loss optimization can effectively boost their cross-modal retrieval performance.","PeriodicalId":360326,"journal":{"name":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cross-Modal Joint Embedding with Diverse Semantics\",\"authors\":\"Zhongwei Xie, Ling Liu, Yanzhao Wu, Lin Li, Luo Zhong\",\"doi\":\"10.1109/CogMI50398.2020.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textual-visual cross-modal retrieval has been an active research area in both computer vision and natural language processing communities. Most existing works learn a joint embedding model that maps raw text-image pairs onto a joint latent representation space in which the similarity between textual embeddings and visual embeddings can be computed and compared, without leveraging diverse semantics. This paper presents a general framework to study and evaluate the impact of diverse semantics extracted from the multi-modal input data on the quality and performance of joint embedding learning. We identify different ways that conventional textual features, such as TFIDF term frequency semantics and image category semantics, can be combined with neural features to further boost the efficiency of joint embedding learning. Experiments on the benchmark dataset Recipe1M demonstrates that existing representative cross-modal joint embedding approaches enhanced with diverse semantics in both raw inputs and joint embedding loss optimization can effectively boost their cross-modal retrieval performance.\",\"PeriodicalId\":360326,\"journal\":{\"name\":\"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogMI50398.2020.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI50398.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文本-视觉跨模态检索一直是计算机视觉和自然语言处理领域的一个活跃研究领域。大多数现有的研究都学习了一种联合嵌入模型,该模型将原始文本-图像对映射到联合潜在表示空间中,在该空间中,文本嵌入和视觉嵌入之间的相似性可以计算和比较,而不需要利用不同的语义。本文提出了一个通用框架来研究和评估从多模态输入数据中提取的不同语义对联合嵌入学习质量和性能的影响。我们确定了传统文本特征(如TFIDF词频语义和图像类别语义)与神经特征相结合的不同方式,以进一步提高联合嵌入学习的效率。在基准数据集Recipe1M上的实验表明,现有代表性的跨模态联合嵌入方法在原始输入和联合嵌入损失优化方面都进行了不同语义的增强,可以有效地提高其跨模态检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Modal Joint Embedding with Diverse Semantics
Textual-visual cross-modal retrieval has been an active research area in both computer vision and natural language processing communities. Most existing works learn a joint embedding model that maps raw text-image pairs onto a joint latent representation space in which the similarity between textual embeddings and visual embeddings can be computed and compared, without leveraging diverse semantics. This paper presents a general framework to study and evaluate the impact of diverse semantics extracted from the multi-modal input data on the quality and performance of joint embedding learning. We identify different ways that conventional textual features, such as TFIDF term frequency semantics and image category semantics, can be combined with neural features to further boost the efficiency of joint embedding learning. Experiments on the benchmark dataset Recipe1M demonstrates that existing representative cross-modal joint embedding approaches enhanced with diverse semantics in both raw inputs and joint embedding loss optimization can effectively boost their cross-modal retrieval performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信