基于块的Arduino编程平台,用于培养K-12学生的计算思维能力

Binsen Qian, Harry H. Cheng
{"title":"基于块的Arduino编程平台,用于培养K-12学生的计算思维能力","authors":"Binsen Qian, Harry H. Cheng","doi":"10.1115/detc2021-68148","DOIUrl":null,"url":null,"abstract":"\n As a critical set of skills in the 21st century, computational thinking has attracted increasing attention in K-12 education. Microcontrollers, combined with LEDs, actuators, and a variety of sensors, provide students countless real-world projects, such as autonomous vehicles, smart homes, and robotics. By solving those projects through programming, students will not only learn computational skills but also benefit from the hands-on activities to get some experience on solving real-world problems. It makes microcontroller projects a perfect tool to develop the computational thinking skills of K-12 students. Our previous work has proposed a solution for higher graders to program Arduino through Ch, a C/C++ interpreter. It is necessary, however, to develop a platform for lower graders (K-6) since most of them do not have the ability to type through the keyboard. This paper extends our previous work such that students can program Arduino on RoboBlockly, a block-based programming platform. In the paper, we will present two case studies to demonstrate how to build blocks to control the Arduino board and what concepts students will learn from those projects. In addition, the proposed platform also provides an interactive way of transitioning students from the block-based program to a text-based program in Ch.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Block-Based Arduino Programming Platform for Developing Computational Thinking Skills for K-12 Students\",\"authors\":\"Binsen Qian, Harry H. Cheng\",\"doi\":\"10.1115/detc2021-68148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a critical set of skills in the 21st century, computational thinking has attracted increasing attention in K-12 education. Microcontrollers, combined with LEDs, actuators, and a variety of sensors, provide students countless real-world projects, such as autonomous vehicles, smart homes, and robotics. By solving those projects through programming, students will not only learn computational skills but also benefit from the hands-on activities to get some experience on solving real-world problems. It makes microcontroller projects a perfect tool to develop the computational thinking skills of K-12 students. Our previous work has proposed a solution for higher graders to program Arduino through Ch, a C/C++ interpreter. It is necessary, however, to develop a platform for lower graders (K-6) since most of them do not have the ability to type through the keyboard. This paper extends our previous work such that students can program Arduino on RoboBlockly, a block-based programming platform. In the paper, we will present two case studies to demonstrate how to build blocks to control the Arduino board and what concepts students will learn from those projects. In addition, the proposed platform also provides an interactive way of transitioning students from the block-based program to a text-based program in Ch.\",\"PeriodicalId\":221388,\"journal\":{\"name\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-68148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-68148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为21世纪的一套关键技能,计算思维在K-12教育中越来越受到关注。微控制器与led、执行器和各种传感器相结合,为学生提供了无数的现实世界项目,如自动驾驶汽车、智能家居和机器人。通过编程解决这些项目,学生不仅可以学习计算技能,还可以从实践活动中受益,获得解决现实问题的经验。它使微控制器项目成为培养K-12学生计算思维能力的完美工具。我们之前的工作提出了一个解决方案,让高年级学生通过C/ c++解释器Ch对Arduino进行编程。但是,由于低年级(K-6年级)的大部分学生还不具备使用键盘的能力,因此有必要开发适合他们的平台。本文扩展了我们之前的工作,使学生可以在RoboBlockly上对Arduino进行编程,RoboBlockly是一个基于块的编程平台。在本文中,我们将介绍两个案例研究,以演示如何构建块来控制Arduino板,以及学生将从这些项目中学到什么概念。此外,所提出的平台还提供了一种交互式的方式,使学生从基于块的课程过渡到基于文本的课程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Block-Based Arduino Programming Platform for Developing Computational Thinking Skills for K-12 Students
As a critical set of skills in the 21st century, computational thinking has attracted increasing attention in K-12 education. Microcontrollers, combined with LEDs, actuators, and a variety of sensors, provide students countless real-world projects, such as autonomous vehicles, smart homes, and robotics. By solving those projects through programming, students will not only learn computational skills but also benefit from the hands-on activities to get some experience on solving real-world problems. It makes microcontroller projects a perfect tool to develop the computational thinking skills of K-12 students. Our previous work has proposed a solution for higher graders to program Arduino through Ch, a C/C++ interpreter. It is necessary, however, to develop a platform for lower graders (K-6) since most of them do not have the ability to type through the keyboard. This paper extends our previous work such that students can program Arduino on RoboBlockly, a block-based programming platform. In the paper, we will present two case studies to demonstrate how to build blocks to control the Arduino board and what concepts students will learn from those projects. In addition, the proposed platform also provides an interactive way of transitioning students from the block-based program to a text-based program in Ch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信