R. Dogan, A. Chatr-aryamontri, Sun Kim, Chih-Hsuan Wei, Yifan Peng, Donald C. Comeau, Zhiyong Lu
{"title":"BioCreative VI精准医学轨道:创建一个训练语料库,用于挖掘受突变影响的蛋白质-蛋白质相互作用","authors":"R. Dogan, A. Chatr-aryamontri, Sun Kim, Chih-Hsuan Wei, Yifan Peng, Donald C. Comeau, Zhiyong Lu","doi":"10.18653/v1/W17-2321","DOIUrl":null,"url":null,"abstract":"The Precision Medicine Track in BioCre-ative VI aims to bring together the Bi-oNLP community for a novel challenge focused on mining the biomedical litera-ture in search of mutations and protein-protein interactions (PPI). In order to support this track with an effective train-ing dataset with limited curator time, the track organizers carefully reviewed Pub-Med articles from two different sources: curated public PPI databases, and the re-sults of state-of-the-art public text mining tools. We detail here the data collection, manual review and annotation process and describe this training corpus charac-teristics. We also describe a corpus per-formance baseline. This analysis will provide useful information to developers and researchers for comparing and devel-oping innovative text mining approaches for the BioCreative VI challenge and other Precision Medicine related applica-tions.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"BioCreative VI Precision Medicine Track: creating a training corpus for mining protein-protein interactions affected by mutations\",\"authors\":\"R. Dogan, A. Chatr-aryamontri, Sun Kim, Chih-Hsuan Wei, Yifan Peng, Donald C. Comeau, Zhiyong Lu\",\"doi\":\"10.18653/v1/W17-2321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Precision Medicine Track in BioCre-ative VI aims to bring together the Bi-oNLP community for a novel challenge focused on mining the biomedical litera-ture in search of mutations and protein-protein interactions (PPI). In order to support this track with an effective train-ing dataset with limited curator time, the track organizers carefully reviewed Pub-Med articles from two different sources: curated public PPI databases, and the re-sults of state-of-the-art public text mining tools. We detail here the data collection, manual review and annotation process and describe this training corpus charac-teristics. We also describe a corpus per-formance baseline. This analysis will provide useful information to developers and researchers for comparing and devel-oping innovative text mining approaches for the BioCreative VI challenge and other Precision Medicine related applica-tions.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-2321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-2321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BioCreative VI Precision Medicine Track: creating a training corpus for mining protein-protein interactions affected by mutations
The Precision Medicine Track in BioCre-ative VI aims to bring together the Bi-oNLP community for a novel challenge focused on mining the biomedical litera-ture in search of mutations and protein-protein interactions (PPI). In order to support this track with an effective train-ing dataset with limited curator time, the track organizers carefully reviewed Pub-Med articles from two different sources: curated public PPI databases, and the re-sults of state-of-the-art public text mining tools. We detail here the data collection, manual review and annotation process and describe this training corpus charac-teristics. We also describe a corpus per-formance baseline. This analysis will provide useful information to developers and researchers for comparing and devel-oping innovative text mining approaches for the BioCreative VI challenge and other Precision Medicine related applica-tions.