基于时间Petri网的最优成本可达性分析

H. Boucheneb, D. Lime, O. Roux, Charlotte Seidner
{"title":"基于时间Petri网的最优成本可达性分析","authors":"H. Boucheneb, D. Lime, O. Roux, Charlotte Seidner","doi":"10.1109/ACSD.2018.000-1","DOIUrl":null,"url":null,"abstract":"This paper investigates the optimal-cost reachability problem in the context of time Petri nets, where a rate cost is associated with each place. This problem consists in deciding whether or not a given goal marking is reachable and providing, in case it is reachable, a sequence leading at lower cost to the goal marking. This paper shows that for some subclasses of cost time Petri nets, the optimal-cost reachability problem can be solved more efficiently using a method based on the state classes, without resorting to linear programming or splitting state classes.","PeriodicalId":242721,"journal":{"name":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal-Cost Reachability Analysis Based on Time Petri Nets\",\"authors\":\"H. Boucheneb, D. Lime, O. Roux, Charlotte Seidner\",\"doi\":\"10.1109/ACSD.2018.000-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the optimal-cost reachability problem in the context of time Petri nets, where a rate cost is associated with each place. This problem consists in deciding whether or not a given goal marking is reachable and providing, in case it is reachable, a sequence leading at lower cost to the goal marking. This paper shows that for some subclasses of cost time Petri nets, the optimal-cost reachability problem can be solved more efficiently using a method based on the state classes, without resorting to linear programming or splitting state classes.\",\"PeriodicalId\":242721,\"journal\":{\"name\":\"2018 18th International Conference on Application of Concurrency to System Design (ACSD)\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th International Conference on Application of Concurrency to System Design (ACSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSD.2018.000-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2018.000-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了时间Petri网中的最优成本可达性问题,其中每个地点都有一个速率成本。这个问题包括决定一个给定的目标标记是否可以达到,并且在可以达到的情况下,提供一个以较低成本导向目标标记的序列。本文表明,对于代价时间Petri网的某些子类,使用基于状态类的方法可以更有效地解决最优代价可达性问题,而无需使用线性规划或分裂状态类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal-Cost Reachability Analysis Based on Time Petri Nets
This paper investigates the optimal-cost reachability problem in the context of time Petri nets, where a rate cost is associated with each place. This problem consists in deciding whether or not a given goal marking is reachable and providing, in case it is reachable, a sequence leading at lower cost to the goal marking. This paper shows that for some subclasses of cost time Petri nets, the optimal-cost reachability problem can be solved more efficiently using a method based on the state classes, without resorting to linear programming or splitting state classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信