三维线段的最近邻Voronoi图

G. Barequet, Evanthia Papadopoulou
{"title":"三维线段的最近邻Voronoi图","authors":"G. Barequet, Evanthia Papadopoulou","doi":"10.1109/ISVD.2013.15","DOIUrl":null,"url":null,"abstract":"We consider the farthest-neighbor Voronoi diagram of a set of line segments in three dimensions. To understand the structure of the diagram, we define the “farthest hull” of the segments and investigate it by its representation in a Gaussian map. We then provide lower and upper bounds on the worst-case complexities of the farthest hull and of the Voronoi diagram.","PeriodicalId":344701,"journal":{"name":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Farthest-Neighbor Voronoi Diagram of Segments in Three Dimensions\",\"authors\":\"G. Barequet, Evanthia Papadopoulou\",\"doi\":\"10.1109/ISVD.2013.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the farthest-neighbor Voronoi diagram of a set of line segments in three dimensions. To understand the structure of the diagram, we define the “farthest hull” of the segments and investigate it by its representation in a Gaussian map. We then provide lower and upper bounds on the worst-case complexities of the farthest hull and of the Voronoi diagram.\",\"PeriodicalId\":344701,\"journal\":{\"name\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2013.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑三维空间中一组线段的最近邻Voronoi图。为了理解图的结构,我们定义了段的“最远船体”,并通过其在高斯图中的表示来研究它。然后,我们提供最远船体和Voronoi图的最坏情况复杂性的下界和上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Farthest-Neighbor Voronoi Diagram of Segments in Three Dimensions
We consider the farthest-neighbor Voronoi diagram of a set of line segments in three dimensions. To understand the structure of the diagram, we define the “farthest hull” of the segments and investigate it by its representation in a Gaussian map. We then provide lower and upper bounds on the worst-case complexities of the farthest hull and of the Voronoi diagram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信