利用机器学习方法从社会人口特征预测职业人格类型

E. Bogacheva, Filipp Tatarenko, I. Smetannikov
{"title":"利用机器学习方法从社会人口特征预测职业人格类型","authors":"E. Bogacheva, Filipp Tatarenko, I. Smetannikov","doi":"10.1145/3437802.3437819","DOIUrl":null,"url":null,"abstract":"This study aimed to apply supervised machine learning techniques to one domain of psychological research: vocational interests. Socio-demographic factors can be considered strong predictors of vocational interests, which might have far-reaching practical implications for professional counselling and social network analysis. The dataset used in this study is a collection of answers to the RIASEC (Holland Codes) psychological test. Different Machine Learning architectures were used to predict RIASEC scales using socio-demographic features. The problem was treated as a multioutput regression task, multiclass and multilabel classification. The following models were used: independent regression, regression chains, three-letter code classification, inferring label relations. Models comparison showed that the models that exploit intercorrelations between RIASEC scales yielded the best results.","PeriodicalId":429866,"journal":{"name":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Vocational Personality Type from Socio-demographic Features Using Machine Learning Methods\",\"authors\":\"E. Bogacheva, Filipp Tatarenko, I. Smetannikov\",\"doi\":\"10.1145/3437802.3437819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to apply supervised machine learning techniques to one domain of psychological research: vocational interests. Socio-demographic factors can be considered strong predictors of vocational interests, which might have far-reaching practical implications for professional counselling and social network analysis. The dataset used in this study is a collection of answers to the RIASEC (Holland Codes) psychological test. Different Machine Learning architectures were used to predict RIASEC scales using socio-demographic features. The problem was treated as a multioutput regression task, multiclass and multilabel classification. The following models were used: independent regression, regression chains, three-letter code classification, inferring label relations. Models comparison showed that the models that exploit intercorrelations between RIASEC scales yielded the best results.\",\"PeriodicalId\":429866,\"journal\":{\"name\":\"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437802.3437819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437802.3437819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究旨在将监督机器学习技术应用于心理学研究的一个领域:职业兴趣。社会人口因素可以被认为是职业兴趣的有力预测因素,这可能对专业咨询和社会网络分析产生深远的实际影响。本研究中使用的数据集是RIASEC(荷兰代码)心理测试的答案集合。使用不同的机器学习架构来使用社会人口特征预测RIASEC量表。该问题被视为一个多输出回归任务,多类别和多标签分类。使用了以下模型:独立回归、回归链、三字母代码分类、推断标签关系。模型比较表明,利用RIASEC尺度间相互关系的模型效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Vocational Personality Type from Socio-demographic Features Using Machine Learning Methods
This study aimed to apply supervised machine learning techniques to one domain of psychological research: vocational interests. Socio-demographic factors can be considered strong predictors of vocational interests, which might have far-reaching practical implications for professional counselling and social network analysis. The dataset used in this study is a collection of answers to the RIASEC (Holland Codes) psychological test. Different Machine Learning architectures were used to predict RIASEC scales using socio-demographic features. The problem was treated as a multioutput regression task, multiclass and multilabel classification. The following models were used: independent regression, regression chains, three-letter code classification, inferring label relations. Models comparison showed that the models that exploit intercorrelations between RIASEC scales yielded the best results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信