带重定时的顺序电路的最佳时钟周期聚类

P. Pan, Arvind K. Karandikar, C. Liu
{"title":"带重定时的顺序电路的最佳时钟周期聚类","authors":"P. Pan, Arvind K. Karandikar, C. Liu","doi":"10.1109/ICCD.1997.628858","DOIUrl":null,"url":null,"abstract":"We consider the problem of clustering sequential circuits subject to a bound on the area of each cluster, with the objective of minimizing clock period. Current algorithms address combinational circuits only, and treat a sequential circuit as a special case, by removing the flip-flops (FFs) and clustering the remaining combinational logic. This approach segments a circuit and assumes the positions of the FFs are fixed. The positions of FFs are in fact dynamic, because of retiming. As a result, current algorithms can only consider a small portion of the available solution space. In this paper, we present a clustering algorithm that does not remove the FFs. It also considers the effect of retiming. The algorithm can produce clustering solutions with optimal clock periods under the unit delay model. For the general delay model, it can produce clustering solutions with clock periods provably close to minimum.","PeriodicalId":154864,"journal":{"name":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Optimal clock period clustering for sequential circuits with retiming\",\"authors\":\"P. Pan, Arvind K. Karandikar, C. Liu\",\"doi\":\"10.1109/ICCD.1997.628858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of clustering sequential circuits subject to a bound on the area of each cluster, with the objective of minimizing clock period. Current algorithms address combinational circuits only, and treat a sequential circuit as a special case, by removing the flip-flops (FFs) and clustering the remaining combinational logic. This approach segments a circuit and assumes the positions of the FFs are fixed. The positions of FFs are in fact dynamic, because of retiming. As a result, current algorithms can only consider a small portion of the available solution space. In this paper, we present a clustering algorithm that does not remove the FFs. It also considers the effect of retiming. The algorithm can produce clustering solutions with optimal clock periods under the unit delay model. For the general delay model, it can produce clustering solutions with clock periods provably close to minimum.\",\"PeriodicalId\":154864,\"journal\":{\"name\":\"Proceedings International Conference on Computer Design VLSI in Computers and Processors\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Conference on Computer Design VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.1997.628858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1997.628858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

我们考虑了以最小化时钟周期为目标的串行电路的聚类问题,每个聚类的面积都有一个界限。目前的算法只处理组合电路,并将顺序电路作为特殊情况,通过去除触发器(ff)和聚类剩余的组合逻辑。这种方法分割电路,并假设ff的位置是固定的。由于重新计时,ff的位置实际上是动态的。因此,目前的算法只能考虑一小部分可用的解空间。在本文中,我们提出了一种不去除FFs的聚类算法。它还考虑了重定时的影响。该算法可以在单位时延模型下产生具有最优时钟周期的聚类解。对于一般延迟模型,它可以产生时钟周期接近最小值的聚类解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal clock period clustering for sequential circuits with retiming
We consider the problem of clustering sequential circuits subject to a bound on the area of each cluster, with the objective of minimizing clock period. Current algorithms address combinational circuits only, and treat a sequential circuit as a special case, by removing the flip-flops (FFs) and clustering the remaining combinational logic. This approach segments a circuit and assumes the positions of the FFs are fixed. The positions of FFs are in fact dynamic, because of retiming. As a result, current algorithms can only consider a small portion of the available solution space. In this paper, we present a clustering algorithm that does not remove the FFs. It also considers the effect of retiming. The algorithm can produce clustering solutions with optimal clock periods under the unit delay model. For the general delay model, it can produce clustering solutions with clock periods provably close to minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信